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The convolutional neural network (ConvNet or CNN) is a powerful dis-
criminative learning machine. In this paper, we show that a generative random
field model that we call generative ConvNet can be derived from the dis-
criminative ConvNet. The probability distribution of the generative ConvNet
model is in the form of exponential tilting of a reference distribution. Assum-
ing rectified linear units and Gaussian white noise reference distribution, we
show that the generative ConvNet model contains a representational structure
with multiple layers of binary activation variables. The model is piecewise
Gaussian, where each piece is determined by the binary activation variables,
which reconstruct the mean of the Gaussian piece. The Langevin dynam-
ics for synthesis is driven by the reconstruction error, and the corresponding
gradient descent dynamics converges to a local energy minimum that is auto-
encoding. As for learning, we show that the contrastive divergence learning
tends to reconstruct the observed images. Finally, we show that the maximum
likelihood learning algorithm can generate realistic natural images.

1. Introduction.

1.1. Recent development. Fueled by the big datasets such as ImageNet [5] and
improved computer power brought by the graphical processing units (GPUs), the
convolutional neural network (ConvNet or CNN) [16, 15] has recently become the
most successful discriminative or predictive learning machine.

The turning event for the resurgence of the ConvNet was its resounding victory
in a competition on the ImageNet dataset [5] in 2012. The ImageNet dataset was
first released in 2009. Starting from 2010, there has been an annual competition on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [28]. One of
the tasks is image classification, which is to assign each image to an object cate-
gory. There are roughly 1.2 million training images, 50,000 validation images, and
100,000 testing images, from 1,000 object categories. In ILSVRC 2012, the Con-
vNet [15] became the runaway winner of the image classification competition. The
winning network has 60 million parameters and 650,000 hidden nodes. It consists
of 5 convolutional layers (some of them are followed by sub-sampling and max-
pooling layers) and 3 fully-connected layers. Since then, the ConvNet and related
∗Equal contributions.
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Fig 1: Filtering or convolution: applying a filter of the size 3× 3× 3 on an image
of the size 6 × 6 × 3 to get a filtered image or feature map of 6 × 6 (with proper
boundary handling). Each pixel of the filtered image is computed by the weighted
sum of the 3×3×3 pixels of the input image centered at this pixel. There are 3 color
channels (R, G, B), so both the input image and the filter are three-dimensional.

deep learning methods have been adopted for many tasks in artificial intelligence,
such as those in computer vision, speech recognition, natural language process-
ing, etc., and have achieved state of the art performances, sometimes super-human
performances, on these tasks.

1.2. ConvNet as unfolded GLM. For statisticians, a ConvNet can be consid-
ered an unfolded version of the generalized linear model (GLM). A GLM is char-
acterized by a weighted sum of input variables followed by a one-dimensional
non-linear link function. A ConvNet, often applied to image, video or speech data,
unfolds the GLM structure along two directions. (1) Convolutional: the weighted
sum is computed locally around each pixel of the image, mapping an input image
to an output image called the filtered image or the feature map. The operation is
called convolution or linear filtering. See Fig. 1 for an illustration of linear filter-
ing. (2) Hierarchical: there are multiple layers of linear filtering and element-wise
non-linear transformation, as well as sub-sampling that makes the filtered images
smaller. After a number of layers, the feature maps are reduced to 1 × 1 due to
repeated sub-sampling. The final layer of features are then used for classification
via a multinomial logistic regression. See Fig. 2 for an illustration.

The convolutional and hierarchical unfolding of the GLM gives rise to a Con-
vNet structure that is both simple and rich. It defines a rich class of functions that
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Fig 3: Rectified Linear Unit (ReLU).

map an image to an object category. The functions are parametrized by the multi-
ple layers of weight and bias parameters, which correspond to the coefficient and
intercept parameters of GLMs. The element-wise non-linear transformation corre-
sponds to the link function of GLM. In the modern ConvNet, the non-linear trans-
formation usually takes the form of Rectified Linear Unit (ReLU) as illustrated by
Fig. 3. See Section 2 for a detailed technical account of the ConvNet.

1.3. Discriminative vs generative. Just like GLM or logistic regression, the
ConvNet is a discriminative or predictive learning machine. The input to the Con-
vNet is an image. The output is an object category. The discriminative direction
is from image to object category. Such a direction is often called the bottom-up
direction.

The ConvNet tells us how to discriminate between, say, a bird and a cat. It does
not tell us what a bird looks like or what a cat looks like. Such knowledge is most
naturally represented by the generative direction, which is from object category
to image. This direction is often called the top-down direction. The generative di-
rection can be mathematically defined by a probability distribution on the image
space, or a random field model. We can learn such a statistical model from training
images. If we sample from the learned model, we can generate or synthesize new
images. We may intuitively consider the sampling process as a matter of imagi-
nation, dreaming, or fantasizing, which is a gift that is obviously possessed by a
human brain.

Despite the successes of the discriminative learning machines such as ConvNet,
the progress on developing generative models is still lagging behind. In this article,
we show that we can turn the discriminative ConvNet into a generative ConvNet
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Fig 4: Generating texture patterns. The first image is the training image, and the
rest are 2 of the images generated by the learning algorithm.

Fig 5: Generating object patterns. The first row displays 4 of the training images,
and the second row displays 4 of the images generated by the learning algorithm.

model. We also show that the generative ConvNet can indeed generate surprisingly
realistic image patterns. Figs. 4 and 5 display two examples. In Fig. 4, the first
image is a single observed training image. The rest are 2 of the images sampled
from the learned generative ConvNet model. In Fig. 5, the first row displays 4 of
the 7 training images. The second row displays 4 of the images sampled from the
learned model. Intuitively, the learned models tell us what ivy leaves look like and
what an egret looks like.

While the discriminative ConvNet can be considered an unfolded version of
GLM, the generative ConvNet is an elaborate Markov random field (MRF) or
equivalently a Gibbs distribution [2], with its potential function defined by the Con-
vNet features.

1.4. Motivation for generative ConvNet. Statisticians sometimes complain that
the ConvNet is a “black-box.” Although such a criticism is not fair, it does convey
a desire to make the ConvNet more transparent and interpretable. This goal can be
partially achieved by turning the discriminative ConvNet into a generative model
with an explicit representation of the image. The generative and representational



6

perspective is more appealing than the discriminative perspective to statisticians
who care more about explaining the data than predicting the categories, especially
because natural images contain such a rich variety of patterns. We can make the
model more interpretable by sparsifying the parameters, which can be naturally
accomplished within a generative and representational framework [36].

Developing generative models and representations is not only important for
making the model understandable, it is also of fundamental importance for un-
supervised learning, where we are only given unlabeled images without knowing
their object categories, because the labeled images may be scarce and expensive to
obtain. The generative models enable us to learn the parameters by explaining the
image data instead of predicting the object categories.

With the success of the discriminative ConvNet, researchers in deep learning
are still searching for deep generative models and unsupervised learning machines.
Our endeavor of developing a generative version of the ConvNet is conceptually
satisfying because it shows that in searching for deep generative models, we need to
look no further beyond the ConvNet. Our work expands the scope of the CovnNet
and connects the ConvNet to various important concepts and methods in machine
learning. It leads to a unified framework of ConvNet that encompasses both the
discriminative classifier and the generative model, and both supervised learning
and unsupervised learning.

1.5. Our results on generative ConvNet. The probability distribution of the
generative ConvNet model is in the form of an exponential tilting of a reference dis-
tribution, and the exponential tilting is defined by the ConvNet that involves multi-
ple layers of liner filtering and non-linear transformation. The generative ConvNet
model can be viewed as a hierarchical version of the FRAME (Filters, Random
field, And Maximum Entropy) model [43], as well as the Product of Experts (PoE)
[6] and Field of Experts (FoE) [27] models.

Being of the form of an exponential tilting model, the generative ConvNet may
appear dull and opaque. The main purpose of this article is to show that the con-
trary is true. Assuming Gaussian white noise reference distribution and ReLU non-
linearity in Fig 3, we discover that the generative ConvNet contains a surprisingly
explicit and exquisite representational structure. Specifically, it contains multiple
layers of binary activation variables that indicate the presence or absence of the
patterns modeled by the multiple layers of filters of the ConvNet. The generative
ConvNet model is non-Gaussian, or more precisely, piecewise Gaussian, where
each piece is determined by the binary activation variables. These binary variables
are computed by a bottom-up process by the multiple layers of filters, and they re-
construct the mean of the Gaussian piece by a top-down process, where the multiple
layers of filters serve as multiple layers of basis functions for image reconstruction.
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The Langevin dynamics [20] can be employed to synthesize images by sam-
pling from the generative ConvNet. Interestingly, the dynamics is driven by the
reconstruction error, i.e., the difference between the current image and the recon-
struction by the binary activation variables mentioned above. Thus image synthesis
and image reconstruction are connected.

The deterministic gradient descent counterpart of the Langevin dynamics was
employed by [41] for exploring the local energy minima of the FRAME model.
They called it the Gibbs Reaction And Diffusion Equation (GRADE). It defines a
dynamics that converges to a local energy minimum. The local energy minima are
the means of the Gaussian pieces mentioned above, and they are auto-encoding via
the aforementioned binary activation variables. Thus the generative ConvNet hides
an auto-encoder at its energy minima. This observation establishes a connection
between the Hopfield network for memory [11] and the auto-encoder.

The model can be learned by maximum likelihood or a simplified variation
called the contrastive divergence [6]. For generative ConvNet, we show that the
contrastive divergence tends to reconstruct the training images by the above men-
tioned auto-encoder.

Finally, we show that the maximum likelihood learning algorithm can generate
a wide variety of realistic natural image patterns, such as those in Figs 4 and 5, thus
validating the generative capacity of the generative ConvNet.

1.6. Contributions and related work. The following are the discoveries that
we have made in this paper about the generative ConvNet. (1) It can be derived
from the discriminative ConvNet. (2) It contains an explicit representational struc-
ture. (3) It is piecewise Gaussian. (4) It can be sampled by a reconstruction driven
algorithm. (5) Its local energy minima are auto-encoding. (6) The contrastive di-
vergence learning of it tends to reconstruct the observed images. (7) It is capable
of generating realistic image patterns. Our work on the generative ConvNet may
pave the way for unsupervised learning of ConvNet from large unlabeled datasets,
which are essentially in unlimited supply without any cost for human annotation.

The model in the form of exponential tilting of a reference distribution where the
exponential tilting is defined by ConvNet was first proposed by [4]. They learned
the model by a non-parametric importance sampling scheme. [21] proposed to
learn the FRAME models based on pre-learned filters of the existing ConvNets.
They did not learn the models from scratch. The hierarchical energy-based models
[17] were studied by the pioneering work of [9] and [24]. However, their models
do not correspond directly to the modern ConvNet.

Compared to the above mentioned papers, we would like to emphasize the con-
ceptual novelty of our work. Starting from a prototype model and then unfolding
it, our work reveals a curious representational structure contained in the model that
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involves multiple layers of activation variables. Such a representational structure is
unexpected for the exponential family models, and was not studied by the papers
cited above.

A main motivation for this paper is to reconcile the FRAME model [43], where
the Gabor wavelets play the role of bottom-up filters, and the Olshausen-Field
model [25], where the wavelets play the role of top-down basis functions, and
unfold these models into a hierarchical sparse compositional model [10, 36]. The
generative ConvNet may help solve this problem.

The representational structure in the generative ConvNet is similar to but subtly
different from the deconvolution network of [40]. The top-down process of the
generative ConvNet is controlled by multiple layers of binary activation variables
computed by the bottom-up process. The generative ConvNet can synthesize new
images in addition to reconstructing observed images.

Compared to the hierarchical models with explicit binary latent variables such
as those based on the Boltzmann machine [7, 29, 18], the generative ConvNet is
directly derived from the discriminative ConvNet. Our work seems to suggest that
in searching for generative models and unsupervised learning machines, we need
to look no further beyond the ConvNet.

There are two major classes of generative models. One consists of exponential
family models such as the FRAME model, and the other consists of latent variable
models such as the Olshausen-Field model. While the former class usually cannot
reconstruct the observed data, the latter class typically needs to negotiate with the
intractable inference. The generative ConvNet has both explicit bottom-up pass
for computing binary variables and explicit top-down pass for reconstructing the
image. It strikes a middle ground between the two classes of models.

One way to get around the intractable inference problem mentioned above is
to use the wake-sleep algorithm [8] or the variational auto-encoder [14, 26, 22].
The parameters in the top-down generation model and the bottom-up recognition
model of a variational auto-encoder are completely separate from each other. In
generative ConvNet, there is a common set of parameters. More importantly, the
generative ConvNet actually contains an auto-encoder at the local minima of its
energy landscape, and the encoding and decoding of this auto-encoder share the
same set of parameters.

1.7. Long standing unsolved issues. The following are the long standing is-
sues that have not been resolved for ConvNet. (1) A ConvNet usually has a large
number of parameters. The number of parameters is usually much larger than the
number of observations. For such a large number of parameters, we can only afford
the gradient-based learning algorithm, where the gradient is computed by back-
propagation. (2) The objective function such as the log-likelihood function for
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training the ConvNet is highly non-convex, with a huge number of local modes.
The gradient-based learning algorithm can only be expected to get close to a local
mode. It has been observed that different local modes often lead to comparable per-
formances. It is also believed that getting close to a local mode instead of a global
mode may actually prevent over-fitting [3]. However, we still do not understand the
statistical properties of these local modes. (3) For generative models, we usually
need to use Markov chain Monte Carlo (MCMC) [20, 19] to generate images from
the models, but the convergence properties of the MCMC algorithms are unknown.

We do not pretend to solve the above issues in this paper. We believe statisticians
have much to contribute to understanding these issues.

1.8. Plan for the rest of the paper. Section 2 reviews the discriminative Con-
vNet. Sections 3 and 4 derive and explain the generative ConvNet. Sections 5 and 6
elucidate the representational structure of the generative ConvNet. Section 7 stud-
ies methods for learning the generative ConvNet. Section 8 presents some experi-
ments on image generation and reconstruction. Sections 9 and 10 conclude with a
brief discussion.

2. Discriminative ConvNet as unfolded GLM. The generalized linear model
(GLM) has two main components: (1) A weighted sum of input variables. (2) A
non-linear link function. The discriminative ConvNet unfolds the GLM for analyz-
ing image data (or video, speech data etc.)

To fix notation, let I(x) be an image defined on the square (or rectangular) image
domainD, where x = (x1, x2) indexes the coordinates of pixels. We can treat I(x)
as a two-dimensional function defined on D. We can also treat I as a vector if we
fix an ordering for the pixels. For a filter F , let F ∗ I denote the filtered image or
feature map, and let [F ∗ I](x) denote the filter response or feature at position x.

A ConvNet is a composition of multiple layers of linear filtering and element-
wise non-linear transformation as expressed by the following recursive formula:

(2.1) [F
(l)
k ∗ I](x) = h

Nl−1∑
i=1

∑
y∈Sl

w
(l,k)
i,y [F

(l−1)
i ∗ I](x+ y) + bl,k

 ,

where l ∈ {1, 2, ...,L} indexes the layer. {F (l)
k , k = 1, ..., Nl} are the filters at

layer l, and {F (l−1)
i , i = 1, ..., Nl−1} are the filters at layer l − 1. k and i are used

to index filters at layers l and l − 1 respectively, and Nl and Nl−1 are the numbers
of filters at layers l and l − 1 respectively. The filters are locally supported, so the
range of y is within a local support Sl (such as a 7 × 7 image patch). The weight
parameters (w

(l,k)
i,y , y ∈ Sl, i = 1, ..., Nl−1) defines a linear filter that operates on



10

(F
(l−1)
i ∗ I, i = 1, ..., Nl−1). The linear filtering operation is followed by a non-

linear transformation h(). At the bottom layer, [F
(0)
k ∗ I](x) = Ik(x), where k ∈

{R,G,B} indexes the three color channels. Sub-sampling may be implemented so
that in [F

(l)
k ∗ I](x), x ∈ Dl ⊂ D. For notational simplicity, we do not make local

max pooling explicit in (2.1).
See Fig. 2 for an illustration. The input image at the bottom layer has 3 color

channels. The linear filtering operation at the bottom layer is illustrated by Fig. 1.
At each subsequent layer, the yellow squares illustrate the filtered images or feature
maps {F (l)

k ∗ I, k = 1, ..., Nl}, and the blue squares illustrate their sub-sampled
versions. There are multiple filtered images or feature maps {F (l)

k ∗I, k = 1, ..., Nl}
produced by the multiple filters {F (l)

k , k = 1, ..., Nl} at each layer l. Just as the
input image has 3 color channels, the multiple filtered images at each layer are
also called multiple channels, where each filter F (l)

k corresponds to a channel k at
layer l. Each filter F (l)

k is illustrated by a set of green images. The filter response
[F

(l)
k ∗ I](x) is a local weighted sum of pixel values around each pixel x of the

filtered images F (l−1)
i ∗ I at the layer below. The green squares illustrate the range

of the local weighted sum, where the summation is also conducted across all the
channels or all the filtered images. The filter response [F

(l)
k ∗ I](x) is also called a

feature, a node, or a unit at layer l.
We take h(r) = max(r, 0), the Rectified Linear Unit (ReLU) that is commonly

adopted in the modern ConvNet [15]. See Fig. 3 for an illustration. This crisp piece-
wise linear transformation is the root of the binary activation variables and piece-
wise Gaussian form of the model. But some results in this paper can be extended
to more general non-linearity.

Compared to the GLM, the weight parameters (w
(l,k)
i,y ) and the bias term bl,k cor-

responds to the coefficient and intercept parameters of the GLM, and the non-linear
transformation h(r) corresponds to the link function. The weighted sum takes place
around each location x and over multiple layers l, thus the ConvNet can be viewed
as an unfolded GLM.

Let (F
(L)
k ) be the top layer filters. The filtered images are usually 1×1 due to re-

peated sub-sampling. Suppose there are C categories. For category c ∈ {1, ..., C},
the scoring function for classification is

(2.2) fc(I;w) =

NL∑
k=1

wc,k[F
(L)
k ∗ I],

where wc,k are the category-specific weight parameters for classification.

DEFINITION 1. Discriminative ConvNet: We define the following conditional
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distribution as the discriminative ConvNet:

(2.3) p(c|I;w) =
exp[fc(I;w) + bc]∑C
c=1 exp [fc(I;w) + bc]

.

where bc is the bias term, and w collects all the weight and bias parameters at all
the layers.

The discriminative ConvNet is a multinomial logistic regression (or soft-max)
that is commonly used for classification [16, 15].

3. Deriving generative ConvNet from discriminative ConvNet. We shall
first define the generative ConvNet and then show that it can be derived from the
discriminative ConvNet.

DEFINITION 2. Generative ConvNet (fully connected version): We define the
following random field model as the fully connected version of the generative Con-
vNet:

(3.1) p(I|c;w) = pc(I;w) =
1

Zc(w)
exp[fc(I;w)]q(I),

where q(I) is a reference distribution or the null model, assumed to be Gaussian
white noise in this paper. Z(w) = Eq{exp[fc(I;w)]} is the normalizing constant.

In (3.1), pc(I;w) is obtained by the exponential tilting of q, and is the conditional
distribution of image given category, p(I|c, w). The model was first proposed by
[4].

PROPOSITION 1. Generative and discriminative ConvNets can be derived from
each other:

(a) Let ρc be the prior probability of category c, if p(I|c;w) = pc(I;w) is defined
according to model (3.1), then p(c|I;w) is given by model (2.3), with bc = log ρc−
logZc(w) + constant.

(b) Suppose a base category c = 1 is generated by q(I), and suppose we fix the
scoring function and the bias term of the base category f1(I;w) = 0, and b1 = 0.
If p(c|I;w) is given by model (2.3), then p(I|c;w) = pc(I;w) is of the form of
model (3.1), with bc = log ρc − log ρ1 + logZc(w).

Proposition 1 can be proved by a simple exercise of the Bayes rule. Result (a) has
already been explained in [4]. Result (b) is stronger and is new. First, it is entirely
reasonable to include Gaussian white noise images as a base category and demand
the discriminative ConvNet (2.3) not to misclassify the Gaussian white noise as an
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object category. It is also reasonable to fix the scoring function and bias term of this
base category at 0 in training for the sake of identifiability. In fact, in the binary
(two-category) logistic regression, the scoring function and the bias term for the
negative category are always fixed at 0. Then

(3.2)
p(c|I;w)

p(c = 1|I;w)
= exp[fc(I;w) + bc].

Meanwhile

(3.3)
p(c|I;w)

p(c = 1|I;w)
=

p(c, I|w)

p(c = 1, I|w)
=
ρcpc(I;w)

ρ1q(I)
,

because p(c, I|w) = p(c|I;w)P (I;w), where the marginal distribution P (I;w) =∑C
c=1 ρcp(I|c;w) is the mixture of all the categories. Thus pc(I;w) is of the form

of model (3.1).
As to learning, we may use the discriminative log-likelihood based on log p(c|I;w),

or we may use the generative log-likelihood based on log p(c, I|w) = log pc(I;w)+
log ρc. Because log p(c, I|w) = log p(c|I;w)+logP (I;w), the discriminative log-
likelihood log p(c|I;w) is without the marginal log-likelihood logP (I;w), result-
ing in the loss of statistical efficiency.

If we only observe unlabeled data {Im,m = 1, ...,M}, we may still use the
exponential tilting form to model and learn from them. A possible model is to
learn filters at a certain convolutional layer L ∈ {1, ...,L} of a ConvNet.

DEFINITION 3. Generative ConvNet (convolutional version or FRAME ver-
sion): we define the following Markov random field model as the convolutional
version or the FRAME version of generative ConvNet:

(3.4) p(I;w) =
1

Z(w)
exp

 K∑
k=1

∑
x∈DL

[F
(L)
k ∗ I](x)

 q(I),
where w consists of all the weight and bias terms that define the filters (F

(L)
k , k =

1, ...,K = NL), and q is the Gaussian white noise model.

Model (3.4) corresponds to the exponential tilting model (3.1) with scoring func-
tion

(3.5) f(I;w) =
K∑
k=1

∑
x∈DL

[F
(L)
k ∗ I](x).

Essentially the above model treats the images {Im} as coming from a single meta-
category, which is to be discriminated from the base category q by the filters (F

(L)
k )
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to be learned from the data. However, it may be too easy to discriminate {Im}
from q, so that we cannot learn anything meaningful by the discriminative log-
likelihood. In this case, we can learn w based on the generative log-likelihood
L(w) =

∑M
m=1 log p(Im;w)/M , with p(I;w) defined by (3.4). The learning of

filters {F (L)
k } by the generative log-likelihood is considered to be unsupervised

because the observed images are unlabeled, i.e., their categories are unknown.
For the rest of the paper, we shall focus on the model (3.4), but all the results

can be easily extended to model (3.1).

4. Generative ConvNet as a Markov random field and hierarchical FRAME
model. Model (3.4) is a Markov random field model [2], where the clique func-
tions are [F

(L)
k ∗ I](x),∀k, x. According to the Hammersley-Clifford theorem [2],

a Markov random filed model can be written as

(4.1) p(I) =
1

Z
exp

[∑
C
λC(I(C))

]
,

where C ⊂ D are the cliques, and each clique C consists of pixels that are neigh-
bors of each other according to a pre-defined neighborhood system. I(C) are the
intensities of pixels in clique C, and λC is the potential function. The challenge
in developing a Markov random field model is to specify the clique functions λC
and estimate them from the data. Model (3.4) solves this problem by assuming
λC(I(C)) = [F

(L)
k ∗ I](x) using the ConvNet filters. The Gaussian white noise q(I)

contributes to cliques that consist of single pixels.
At the first glance, defining clique functions by the ConvNet filters may appear

to be arbitrary and ad hoc, but it is actually based on a rich tradition in generative
modeling. The first model in the literature that represents the clique functions by
non-linear transformations of linear filter responses is the FRAME (Filters, Ran-
dom field, And Maximum Entropy) model [43]. The generative ConvNet (3.4) can
be considered a hierarchical FRAME model, with alternating layers of linear filter-
ing and non-linearity.

More importantly, the recursive form of equation (2.1) has an interesting justi-
fication by generative modeling. Based on filters {F (l−1)

i ,∀i} at layer l − 1, each
filter F (l)

k at layer l corresponds to a non-stationary FRAME model [36, 21] of an
image patch defined on the support of the filter, Sl, and centered at x:

(4.2) p
(l)
k (I;w, x) =

1

Z
(l)
k (w, x)

exp

Nl−1∑
i=1

∑
y∈Sl

w
(l,k)
i,y [F

(l−1)
i ∗ I](x+ y)

 q(I),
where (w

(l,k)
i,y ,∀i, y) are the parameters of the above exponential family model. The

model is also a generative ConvNet model, and it can generate vivid object patterns
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[21]. The bias term bl,k and the ReLU non-linearity h() in equation (2.1) can be
justified by a mixture model P (l)

k (I;w, x) = αp
(l)
k (I;w, x) + (1 − α)q(I), which

is a mixture of presence and absence of the object pattern modeled by the non-
stationary FRAME model (4.2). Writing P (l)

k (I;w, x) = exp
[
f
(l)
k (I;w, x)

]
q(I)

gives rise to the soft-max non-linearity log(1 + er) that can be approximated by
ReLU max(0, r), and the bias term bl,k that is determined by α and Z(l)

k (w, x).
Finally, taking the product of P (l)

k (I;w, x) over k and x gives rise to a Product
of Experts (PoE) model [6], which is the generative ConvNet (3.4) using filters at
layer l. See [21] for details.

5. A prototype model. We shall explain the key properties of the generative
ConvNet by the simplest prototype model, which makes crystal clear most of the
key elements of the generative ConvNet model (3.4). A similar model was studied
by [37]. The generative ConvNet can be obtained from the prototype model by
unfolding the latter both convolutionally and hierarchically, but with much more
involved notation that is in danger of obscuring the key ideas. Hence it is helpful
to start from the prototype model.

In our prototype model, we assume that the image domain D is small (e.g.,
10× 10). Suppose we want to learn a dictionary of filters or basis functions from a
set of observed image patches {Im,m = 1, ...,M} defined on D. We denote these
filters or basis functions by (wk, k = 1, ...,K), where each wk itself is an image
patch defined onD. Let 〈I,wk〉 =

∑
x∈Dwk(x)I(x) be the inner product between

image patches I and wk. It is also the response of I to the linear filter wk.

DEFINITION 4. Prototype model: We define the following random field model
as the prototype model:

(5.1) p(I;w) =
1

Z(w)
exp

[
K∑
k=1

h(〈I,wk〉+ bk)

]
q(I),

where bk is the bias term, w = (wk, bk, k = 1, ...,K), and h(r) = max(r, 0). q(I)
is the Gaussian white noise model,

(5.2) q(I) =
1

(2πσ2)|D|/2
exp

[
− 1

2σ2
||I||2

]
,

where |D| counts the number of pixels in the domain D.

The following are our findings about the prototype model.
(1) Piecewise Gaussian and binary activation variables: The prototype model

(5.1) is a piecewise Gaussian distribution. Without loss of generality, let us assume
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σ2 = 1 in q(I). Define the binary activation variable δk(I;w) = 1 if 〈I,wk〉+bk >
0 and δk(I;w) = 0 otherwise, i.e.,

(5.3) δk(I;w) = 1(〈I,wk〉+ bk > 0),

where 1() is the indicator function. Then

(5.4) h(〈I,wk〉+ bk) = δk(I;w)(〈I,wk〉+ bk).

The image space is divided into 2K pieces by the K hyper-planes, 〈I,wk〉 +
bk = 0, k = 1, ...,K, according to the values of the binary activation variables
(δk(I;w), k = 1, ...,K). Consider the piece where δk(I;w) = δk for k = 1, ...,K.
Here we abuse the notation slightly where δk ∈ {0, 1} on the right hand side
denotes the value of δk(I;w). Write δ(I;w) = (δk(I;w), k = 1, ...,K), and
δ = (δk, k = 1, ...,K) as an instantiation of δ(I;w). We call δ(I;w) the acti-
vation pattern of I. Let A(δ;w) = {I : δ(I;w) = δ} be the piece of image space
that consists of images sharing the same activation pattern δ, then the probability
density on this piece

(5.5)

p(I;w, δ) ∝ exp

[
K∑
k=1

δkbk + 〈I,
K∑
k=1

δkwk〉 −
‖I‖2

2

]

∝ exp

[
−1

2
‖I−

K∑
k=1

δkwk‖2
]
,

which is N(
∑

k δkwk,1) restricted to the piece A(δ;w), where the bold font 1 is
the identity matrix (recall we assume σ2 = 1). δ = (δk) are the binary activation
variables that reconstruct the mean of this Gaussian piece,

∑
k δkwk, which can be

considered an approximated reconstruction of the images in A(δ;w).
(2) Synthesis via reconstruction: One can sample from p(I;w) in (5.1) by the

Langevin dynamics:

(5.6) Iτ+1 = Iτ −
ε2

2

[
Iτ −

K∑
k=1

δk(Iτ ;w)wk

]
+ εZτ ,

where τ denotes the time step, ε denotes the step size, assumed to be sufficiently
small throughout this paper, and Zτ ∼ N(0,1). The dynamics is driven by the
reconstruction error I−

∑
k δkwk, where the reconstruction is based on the binary

activation variables (δk). This links synthesis to reconstruction.
(3) Auto-encoding local modes: The deterministic part of the dynamics Iτ+1 =

Iτ − ε2

2

[
Iτ −

∑K
k=1 δk(Iτ ;w)wk

]
will converge to a local energy minimum Î,
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where

(5.7) Î =
K∑
k=1

δk(Î;w)wk.

That is, Î is auto-encoding. The encoding process is bottom-up and infers δk =
δk(Î;w) = 1(〈Î,wk〉 + bk > 0). The decoding process is top-down and recon-
structs Î =

∑
k δkwk. In the encoding process, wk plays the role of filter. In the

decoding process, wk plays the role of basis function. The local modes are the
means of the Gaussian pieces mentioned above, but the converse if not true, since
Î may not belong to A(δ;w).

The learning of w from training images {Im,m = 1, ...,M} can be accom-
plished by maximum likelihood. DefineL(w) =

∑M
m=1 log p(I;w)/M , with p(I;w)

defined in (5.1), then

(5.8)

∂L(w)

∂wk
=

1

M

M∑
m=1

δk(Im;w)I− Ew[δk(I;w)I],

∂L(w)

∂bk
=

1

M

M∑
m=1

δk(Im;w)− Ew[δk(I;w)],

where Ew is the expectation with respect to p(I;w), and can be approximated by
Monte Carlo samples produced by the Langevin dynamics. At the maximum like-
lihood estimate of w, the model matches the observed images in terms of (1) the
frequency that δk is on, and (2) the average of images on which δk is on, for every
k.

The reference distribution is usually not emphasized in previous treatments of
exponential family models. It plays a crucial role in our work. The Gaussian white
noise reference distribution makes the density p(I;w) in (5.1) integrable, and leads
to the reconstruction error interpretation in the Langevin dynamics. It is also crucial
for the auto-encoder form of the local modes.

The reason we choose Gaussian white noise model as the reference distribu-
tion is that it is the maximum entropy distribution with given marginal mean and
variance. Thus it is the most featureless distribution. The exponential tilting seeks
to explain the departure from the Gaussian distribution by learning non-Gaussian
features.

Another justification for the Gaussian white noise distribution is that it is the
limiting distribution if we zoom out a texture image due to the central limit theo-
rem, a phenomenon called information scaling by [34]. The exponential tilting is to
recover the non-Gaussian distribution before the central limit theorem takes effect.
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A key point is that the ReLU h(r) = max(0, r) can be written as h(r) = δr,
where δ = 1(r > 0). Thus given the binary indicators, the scoring function
f(I;w) =

∑K
k=1 h(〈I,wk〉+ bk) is piecewise linear in I. Together with the Gaus-

sian white noise term ‖I‖2/2, the probability distribution is piecewise Gaussian.
The ReLU non-linarity is a perfect match to the Gaussian white noise q. The com-
bination of the two gives us a simple and rich structure.

We would also like to compare the prototype model with two strategies for de-
veloping generative models. Strategy 1: Treat δk as latent random variables. We
put a prior distribution on (δk, k = 1, ...,K), usually assumed to be independent
of each other, and then let (δk) generate I, e.g., I ∼ N(

∑
k δkwk, σ

2). The model
has an explicit representation of I in terms of

∑
k δkwk, where (wk) play the role

of basis functions for representing I. The problem with such a model is that the
posterior distribution of (δk) given I is usually not in closed form. In fact, inferring
(δk) from I given the basis functions (wk) is a variable selection problem, where
I is the response variable, and (wk) are the predictor variables. The difficulty with
the inference of (δk) makes it difficult to learn w. Strategy 2: Assume an exponen-
tial family model based on the sufficient statistics or feature statistics h(〈I,wk〉),
where (wk) play the role of linear filters or projections. The problem with such a
model is that in general we do not have an explicit representation or reconstruc-
tion of the image I. However, with ReLU h and Gaussian white noise q, we can
elucidate an explicit representation or reconstruction as explained above. Thus our
method strikes a middle ground between the above two strategies. Such a repre-
sentation is not only conceptually appealing, it can also be important for learning,
where we may seek to minimize the reconstruction error instead of maximizing the
log-likelihood, which requires MCMC sampling. In Section 7, we shall see that a
popular variation of the maximum likelihood learning algorithm called contrastive
divergence actually seeks to minimize the reconstruction error.

In Strategy 1, it is possible to make the posterior distribution of (δk) given I
explicit at the expense of an implicit prior distribution on (δk), such as in the re-
stricted Boltzmann machine [7, 29, 18]. However, in the hierarchical generaliza-
tions such as the deep Boltzmann machine, the posterior of the binary variables
becomes intractable [29]. In contrast, the prototype model can be easily general-
ized to a hierarchical model without such a difficulty as we shall see in the next
section.

The binary activation variables (δk) indicate the selection of the basis functions
from (wk) for representing I. In the prototype model, the selection is based on δk =
1(〈I,wk〉+ bk > 0). It is possible to generalize the definition of δk to incorporate
explaining-away competition, e.g., among highly correlated basis functions, only
the one with the biggest |〈I, wk〉| should be selected. Thus writing the model in
terms of the binary activation variables may lead to interesting generalizations,
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which is another advantage of our model.

6. Representational structure of generative ConvNet. Just as the discrimi-
native ConvNet can be considered an unfolded version of the GLM, the generative
ConvNet can be considered an unfolded version of the prototype model. In order
to generalize the prototype model (5.1) to the generative ConvNet (3.4), we only
need to add two elements: (1) Horizontal unfolding: make the filters (wk) convo-
lutional. (2) Vertical unfolding: make the filters (wk) multi-layer or hierarchical.
The results we have obtained for the prototype model can be unfolded accordingly.

Following the analysis of the prototype model, our plan is to write the scoring
function f(I;w) =

∑K
k=1

∑
x∈DL [F

(L)
k ∗ I](x) of the generative ConvNet (3.4) as

a piecewise linear function of I. We shall use the vector notation for the ConvNet
in order to minimize the use of indices (although there are still plenty remaining).
For filters at level l, the Nl filters are denoted by the compact notation F(l) =

(F
(l)
k , k = 1, ..., Nl). The Nl filtered images or feature maps are denoted by the

compact notation F(l) ∗ I = (F
(l)
k ∗ I, k = 1, ..., Nl). F(l) ∗ I is a 3D image,

containing all the Nl filtered images at layer l. See Fig. 2 for an illustration, where
the filtered images at each layer are illustrated as a 3D image. In the vector notation,
the recursive formula (2.1) of ConvNet filters can be rewritten as

(6.1) [F
(l)
k ∗ I](x) = h

(
〈w(l)

k,x,F
(l−1) ∗ I〉+ bl,k

)
,

where w
(l)
k,x matches the dimension of F(l−1) ∗ I, which is a 3D image containing

all the Nl−1 filtered images at layer l − 1. Specifically,

(6.2) 〈w(l)
k,x,F

(l−1) ∗ I〉 =

Nl−1∑
i=1

∑
y∈Sl

w
(l,k)
i,y [F

(l−1)
i ∗ I](x+ y).

The 3D basis function w
(l)
k,x is locally supported (on x+Sl), and (w

(l)
k,x) are spatially

translated copies for different positions x, i.e.,

(6.3) w
(l)
k,x,i(x+ y) = w

(l,k)
i,y ,

for i ∈ {1, ..., Nl−1}, x ∈ Dl and y ∈ Sl. For instance, at layer l = 1, w(1)
k,x

is a Gabor-like wavelet of type k centered at position x. In Fig. 2, the 3D filtered
images at layer l, F(l)∗I, is illustrated by a yellow cuboid. The sub-sampled version
is illustrated by a blue cuboid. The locally supported 3D basis function, w(l)

k,x, is
illustrated by a green cuboid.

w
(l)
k,x is the unfolded version of wk in the prototype model, where x indexes

the position for convolutional unfolding, and l indexes the layer for hierarchical
unfolding.
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Define the binary activation variable

(6.4) δ
(l)
k,x(I;w) = 1

(
〈w(l)

k,x,F
(l−1) ∗ I〉+ bl,k > 0

)
.

Since F (l)
k corresponds to a non-stationary FRAME model (4.2), δ(l)k,x(I;w) is a

decision maker based on the likelihood ratio test of H1 : p
(l)
k (I;w, x) vs H0 : q(I)

for detecting the pattern modeled by F (l)
k .

According to (2.1), we have the following bottom-up process:

(6.5) [F
(l)
k ∗ I](x) = δ

(l)
k,x(I;w)

(
〈w(l)

k,x,F
(l−1) ∗ I〉+ bl,k

)
.

Let δ(I;w) = (δ
(l)
k,x(I;w),∀k, x, l) be the activation pattern at all the layers.

The activation pattern δ(I;w) can be computed by the bottom-up process (6.4) and
(6.5) of the ConvNet.

For the scoring function f(I;w) =
∑K

k=1

∑
x∈DL [F

(L)
k ∗ I](x) defined in (3.5)

for the generative ConvNet, we can write it in terms of lower layers (l ≤ L) of
filter responses:

(6.6)

f(I;w) = αl + 〈B(l),F(l) ∗ I〉

= αl +

Nl∑
k=1

∑
x∈Dl

B
(l)
k (x)[F

(l)
k ∗ I](x),

where B(l) = (B
(l)
k (x), k = 1, ..., Nl, x ∈ Dl) consists of the maps of the coeffi-

cients at layer l. B(l) matches the dimension of F(l) ∗I. When l = L, B(L) consists
of maps of 1’s, i.e., B(L)

k (x) = 1 for k = 1, ...,K = NL and x ∈ DL. According
to equations (6.5) and (6.6), we have the following top-down process:

(6.7) B(l−1) =

Nl∑
k=1

∑
x∈Dl

B
(l)
k (x)δ

(l)
k,x(I;w)w

(l)
k,x,

where both B(l−1) and w
(l)
k,x match the dimension of F(l−1) ∗ I. Equation (6.7) is

a top-down deconvolution process, where B
(l)
k (x)δ

(l)
k,x serves as the coefficient of

the basis function w
(l)
k,x. The top-down deconvolution process (6.7) is similar to

but subtly different from that in [39], because equation (6.7) is controlled by the
multiple layers of activation variables δ(l)k,x computed in the bottom-up process of

the ConvNet. Specifically, δ(l)k,x turns on or off the basis function w
(l)
k,x, while δ(l)k,x

is determined by F (l)
k . The recursive relationship for αl can be similarly derived.
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In the bottom-up convolution process (6.5), (w
(l)
k,x) serve as filters. In the top-

down deconvolution process (6.7), (w
(l)
k,x) serve as basis functions.

Let B = B(0), α = α0. Since F(0) ∗ I = I, we have f(I;w) = α+ 〈I,B〉. Note
that B depends on the activation pattern δ(I;w) = (δ

(l)
k,x(I;w),∀k, x, l), as well as

w that collects the weight and bias parameters at all the layers.
On the piece of image space A(δ;w) = {I : δ(I;w) = δ} of a fixed activation

pattern (again we slightly abuse the notation where δ = (δ
(l)
k,x ∈ {0, 1},∀k, x, l)

denotes an instantiation of the activation pattern), B and α depend on δ and w. To
make this dependency explicit, we denote B = Bw,δ and α = αw,δ, thus

(6.8) f(I;w) = αw,δ + 〈I,Bw,δ〉.

See [23] for an analysis of the number of linear pieces.

THEOREM 1. Generative ConvNet is piecewise Gaussian: With ReLU h(r) =
max(0, r) and Gaussian white noise q(I), p(I;w) of model (3.4) is piecewise Gaus-
sian. On each piece A(δ;w), the density is N(Bw,δ,1) truncated to A(δ;w), i.e.,
Bw,δ is an approximated reconstruction of images in A(δ;w).

Theorem 1 follows from the fact that on A(δ;w),

(6.9)
p(I;w, δ) ∝ exp

[
αw,δ + 〈I,Bw,δ〉 −

‖I‖2

2

]
∝ exp

[
−1

2
‖I−Bw,δ‖2

]
,

which is N(Bw,δ,1) restricted to A(δ;w).
For each I, the binary activation variables in δ = δ(I;w) are computed by the

bottom-up detection process (6.4) and (6.5), and Bw,δ is computed by the top-down
deconvolution process (6.7).

One can sample from p(I;w) of model (3.4) by the Langevin dynamics:

(6.10) Iτ+1 = Iτ −
ε2

2

[
Iτ −Bw,δ(Iτ ;w)

]
+ εZτ ,

where Zτ ∼ N(0,1). Again, the dynamics is driven by the reconstruction error
I−Bw,δ(I;w).

The deterministic part of the Langevin equation (6.10) was employed by [41] for
exploring the local modes of the FRAME model. They called it the Gibbs Reaction
and Diffusion Equation (GRADE). The GRADE attractor dynamics Iτ+1 = Iτ −
ε2

2

[
Iτ −Bw,δ(Iτ ;w)

]
converges to a local energy minimum that is auto-encoding.
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PROPOSITION 2. The local modes are auto-encoding: Let Î be a local maxi-
mum of p(I;w) of model (3.4), then Î is auto-encoding with the following bottom-
up and top-down passes:

(6.11)
Bottom-up encoding: δ = δ(Î;w);

Top-down decoding: Î = Bw,δ.

The local energy minima are the means of the Gaussian pieces in Theorem 1,
but the reverse is not necessarily true because Bw,δ does not necessarily belong to
A(δ;w). But if Bw,δ ∈ A(δ;w), then Bw,δ must be a local mode.

Proposition 2 can be generalized to general non-linear h(), whereas Theorem 1
is true only for piecewise linear h() such as ReLU.

Proposition 2 is interestingly related to the Hopfield network [11] and attractor
network [30]. The main idea of the Hopfield network is to memorize the obser-
vations by the local energy minima. Such a memory is content addressable in the
sense that if we are given part of an observed image, we may still be able to recall
the whole image by running a gradient descent algorithm towards the local mode.
Such a gradient descent algorithm is called an attractor dynamics. Proposition 2
shows that the Hopfied minima can be represented by a hierarchical auto-encoder.

To gain a more comprehensive understanding of the deconvolution process, we
would like to treat it from a slightly different perspective. For each filter F (l)

k de-
fined in the recursive formulas (2.1) and (6.1), let [F̄

(l)
k ∗ I](x) = 〈w(l)

k,x, F
(l−1) ∗

I〉+ bl,k be the linear combination before ReLU non-linearity. On A(δ;w) = {I :

δ(I;w) = δ}, i.e., given the activation pattern δ, [F̄
(l)
k ∗ I](x) becomes a linear

filter, and we can write

(6.12) [F̄
(l)
k ∗ I](x) = a

(l)
k,x + 〈I,b(l)

k,x〉,

where b(l)
k,x is the basis function or a basis image defined on D. According to (2.1),

(6.13)

b
(l)
k,x =

Nl−1∑
i=1

∑
y∈Sl

w
(l,k)
i,y δ

(l−1)
i,x+yb

(l−1)
i,x+y,

a
(l)
k,x =

Nl−1∑
i=1

∑
y∈Sl

w
(l,k)
i,y δ

(l−1)
i,x+ya

(l−1)
i,x+y + bl,k.

At the bottom layer, for color channel k ∈ {R,G,B}, we have b
(0)
k,x(y) = 1 if

y = x and b
(0)
k,x(y) = 0 otherwise, i.e., the delta-function. Also, b0,k = 0, and

δ
(0)
k,x = 1.
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Equation (6.13) corresponds to back-propagation calculation in the discrimina-
tive ConvNet. But it takes a novel representational role in the generative ConvNet.
There are two complementary views of equation (6.13).

(1) Bottom-up composition: In view of the basis functions, (6.13) defines a com-
position process, where the higher layer basis function b

(l)
k,x is a composition of

lower layer basis functions {b(l−1)
i,x+y, i = 1, ..., Nl−1, y ∈ Sl} with coefficients

{w(l,k)
i,y δ

(l−1)
i,x+y}. Note that the weight parameters w(l,k)

i,y can be turned on or off by

the activation variable δ(l−1)i,x+y, so that the composition is reconfigurable and b
(l)
k,x is

a reconfigurable basis function that follows an And-Or logic [42]. Sparsifying the
connections will make the compositions more explicit and meaningful [37, 35].

(2) Top-down decomposition: In view of the maps of coefficients, (6.13) defines
a top-down deconvolution process, where the coefficients of the lower layer basis
functions b

(l−1)
i,x+y are obtained by expanding the coefficients of higher layer basis

functions b(l)
k,x. This view is consistent with the deconvolution process about B(l)

in equation (6.7).
On the piece A(δ;w) = {I : δ(I;w) = δ}, f(I;w) =

∑K
k=1

∑
x∈DL [F

(L)
k ∗

I](x) in (3.5) is linear, i.e., f(I;w) = αw,δ + 〈I,Bw,δ〉, where

(6.14)

Bw,δ =
K∑
k=1

∑
x∈DL

δ
(L)
k,xb

(L)
k,x ,

αw,δ =
K∑
k=1

∑
x∈DL

δ
(L)
k,xa

(L)
k,x .

In the prototype model, Bw,δ =
∑

k δkwk and αw,δ =
∑

k δkbk.

7. Learning generative ConvNet. The learning of w from training images
{Im,m = 1, ...,M} can be accomplished by maximum likelihood. Let

(7.1) L(w) =
1

M

M∑
m=1

log p(I;w),

with p(I;w) defined in (3.4), then

(7.2)
∂L(w)

∂w
=

1

M

M∑
m=1

∂

∂w
f(Im;w)− Ew

[
∂

∂w
f(I;w)

]
.

The expectation can be approximated by Monte Carlo samples [38] from the
Langevin dynamics (6.10). See Algorithm 1 for a description of the learning and
sampling algorithm.
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We can build up the model layer by layer. Given the filters at layers below, the
top layer weight and bias parameters can be learned according to

(7.3)

∂L(w)

∂w
(L,k)
i,y

=
1

M

M∑
m=1

∑
x∈DL

δ
(L)
k,x (Im;w)[F

(L−1)
i ∗ Im](x+ y)

− Ew

∑
x∈DL

δ
(L)
k,x (I;w)[F

(L−1)
i ∗ I](x+ y)

 ,
and

(7.4)
∂L(w)

∂bL,k
=

1

M

M∑
m=1

∑
x∈DL

δ
(L)
k,x (Im;w)− Ew

∑
x∈DL

δ
(L)
k,x (I;w)

 .
The above equations are unfolded versions of (5.8). At the maximum likelihood
estimate of w, the model matches the observed images in terms of (1) the aver-
age frequency that δ(L)k,x is on, and (2) the average of patches of the filtered image

F
(L−1)
i ∗ I on which δ(L)k,x is on, where the average is pooled over x, and the match-

ing happens for every k.

Algorithm 1 Learning and sampling algorithm
Input:

(1) training images {Im,m = 1, ...,M}
(2) number of synthesized images M̃
(3) number of Langevin steps L
(4) number of learning iterations T

Output:
(1) estimated parameters w
(2) synthesized images {Ĩm,m = 1, ..., M̃}

1: Let t← 0, initialize w(0) ← 0.
2: Initialize Ĩm ← 0, for m = 1, ..., M̃ .
3: repeat
4: For each m, run L steps of Langevin dynamics to update Ĩm, i.e., starting from the current

Ĩm, each step follows equation (6.10).
5: Calculate Hobs =

∑M
m=1

∂
∂w
f(Im;w(t))/M , and Hsyn =

∑M̃
m=1

∂
∂w
f(Ĩm;w(t))/M̃ .

6: Update w(t+1) ← w(t) + η(Hobs −Hsyn), with step size η.
7: Let t← t+ 1
8: until t = T

If we want to learn from big data, we may use the contrastive divergence method
[6] by starting the Langevin dynamics from the observed images, and run one or a
small number of iterations. Then we use the sampled images to approximate the ex-
pectation in equation (7.2) for updating the parameters. The contrastive divergence
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algorithm has become very popular for learning generative models and often lead
to reasonable performances, although its theoretical properties are still not well un-
derstood. We shall show that the behavior of the contrastive divergence learning of
the generative ConvNet is interestingly connected to reconstruction.

Suppose we start from an observed image Iobs, and run a small number of itera-
tions of Langevin dynamics (6.10) to get a synthesized image Isyn. If both Iobs

and Isyn share the same activation pattern δ(Iobs;w) = δ(Isyn;w) = δ, then
f(I;w) = aw,δ + 〈I,Bw,δ〉 for both Iobs and Isyn. Then the contribution of Iobs to
the learning gradient is

(7.5)
∂

∂w
f(Iobs;w)− ∂

∂w
f(Isyn;w) = 〈Iobs − Isyn,

∂

∂w
Bw,δ〉.

If Isyn is close to the mean Bw,δ and if Bw,δ is a local mode, then the contrastive
divergence tends to reconstruct Iobs by the local mode Bw,δ, because the gradient

(7.6)
∂

∂w
‖Iobs −Bw,δ‖2/2 = −〈Iobs −Bw,δ,

∂

∂w
Bw,δ〉.

Hence the contrastive divergence learns the Hopfield network which memorizes
the observations by the local modes.

We can establish a precise connection for one-step contrastive divergence.

PROPOSITION 3. Contrastive divergence learns to reconstruct: If the one-
step Langevin dynamics does not change the activation pattern, i.e., δ(Iobs;w) =
δ(Isyn;w) = δ, then the one-step contrastive divergence has an expected gradient
that is proportional to the reconstruction gradient:

(7.7) E

[
∂

∂w
f(Iobs;w)− ∂

∂w
f(Isyn;w)

]
∝ ∂

∂w
‖Iobs −Bw,δ‖2.

This is because

(7.8) Isyn = Iobs − ε2

2

[
Iobs −Bw,δ

]
+ εZ,

hence

(7.9) EZ

[
Iobs − Isyn

]
∝ Iobs −Bw,δ,

and Proposition 3 follows from (7.5) and (7.6).
Proposition 3 is related to score matching estimator of [12], whose connection

with the contrastive divergence based on one-step Langevin dynamics was studied
by [13]. The relationship between score matching and auto-encoder was discov-
ered by [33] and [31]. Our work can be considered a sharpened specialization of
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the above mentioned connection and relationship, where the piecewise linear struc-
ture of the ConvNet greatly simplifies the matter by getting rid of the complicated
second derivative terms, so that the contrastive divergence gradient becomes ex-
actly proportional to the gradient of the reconstruction error, which is not the case
in general score matching estimator. Also, our work gives a novel hierarchical re-
alization of the relationship between probability model and auto-encoder, as well
as an explicit hierarchical realization of auto-encoder based sampling of [1]. The
connection with the Hopfied network also appears new.

Proposition 3 suggests that we may learn the weight parameters by directly min-
imizing the reconstruction error, without having to deal with Monte Caro fluctu-
ations. As to the bias parameters, which threshold the likelihood ratio tests for
pattern detection, we can simply set their values to constrain the sparsity [25] of
activations. Such an unsupervised learning method is as fast as training a discrimi-
native ConvNet in supervised learning.

In general, it is possible for multi-step Langevin dynamics to move out of the
Gaussian piece of Iobs and into another piece of a different activation pattern. But it
is unlikely for the activation patterns of Iobs and Isyn to be very different. It may be
particularly difficult to flip the activation variables at higher layers. In this case, the
contrastive divergence may be maximizing the pseudo-likelihood [2] conditioning
on the higher layer binary variables. In any case, equation (7.4) makes it clear that
we do not have much information to update the bias terms associated with these
variables, but we can set their values by sparsity constraints as mentioned above.

8. Synthesis and reconstruction by generative ConvNet. We show that the
generative ConvNet is capable of learning and generating realistic natural image
patterns. Such an empirical proof of concept validates the generative capacity of the
model. We also show that contrastive divergence learning can indeed reconstruct
the observed images, thus empirically validating Proposition 3.

The experiments in this section are qualitative and illustrative in nature. They
are not intended for quantitative performance study. The code in our experiments
is based on the MatConvNet package of [32].

Unlike [21], the generative ConvNets in our experiments are learned from scratch
without relying on the pre-learned filters of the existing ConvNets.

When learning the generative ConvNet, we grow the layers sequentially. Starting
from the first layer, we sequentially add the layers one by one. Each time we learn
the model and generate the synthesized images using Algorithm 1. While learning
the new layer of filters, we can either fix lower layers of filters while updating the
top layer weight and bias parameters according to equations (7.3) and (7.4), or we
can additionally refine the lower layer filters by back-propagation at the same time.
Both strategies work well for image synthesis. We adopt the latter strategy in our
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Fig 6: Generating texture patterns. For each category, the first image is the training
image, and the rest are 2 of the images generated by the learning algorithm.
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Fig 7: Generating object patterns. For each category, the first row displays 4 of
the training images, and the second row displays 4 of the images generated by the
learning algorithm.
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Fig 8: Reconstruction by the one-step contrastive divergence. The first row displays
4 of the training images, and the second row displays the corresponding recon-
structed images.

experiments.
We use M̃ = 16 parallel chains for Langevin sampling. The number of Langevin

iterations between every two consecutive updates of parameters is L = 10. With
each new added layer, the number of learning iterations is T = 700. We follow
the standard procedure to prepare the training images of size 224 × 224, whose
intensities range from [0, 255], and we subtract the mean image. We fix σ2 = 1 in
the reference distribution q(I).

For each of the 3 experiments, we use the same set of parameters for all the
categories without tuning.

8.1. Experiment 1: Generating texture patterns. We learn a 3-layer generative
ConvNet. The first layer has 100 15 × 15 filters with sub-sampling size of 3. The
second layer has 64 5×5 filters with sub-sampling size of 1. The third layer has 30
3 × 3 filters with sub-sampling size of 1. We learn a generative ConvNet for each
category from a single training image. Fig. 6 displays the results. For each category,
the first image is the training image, and the rest are 2 of the images generated by
the learning algorithm.

8.2. Experiment 2: Special case: generating aligned object patterns. Experi-
ment 1 shows clearly that the generative ConvNet can learn from images without
alignment. We can also specialize it to learning aligned object patterns by using a
single top-layer filter that covers the whole image. It is actually a non-stationary
FRAME model of the form (4.2), i.e., a convolutional filter at a fixed position be-
fore ReLU non-linearity.

We learn a 4-layer generative ConvNet from images of aligned objects. The first
layer has 100 7 × 7 filters with sub-sampling size of 2. The second layer has 64
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5 × 5 filters with sub-sampling size of 1. The third layer has 20 3 × 3 filters with
sub-sampling size of 1. The fourth layer is a fully connected layer with a single
filter that covers the whole image. When growing the layers, we always keep the
top-layer single filter, and train it together with the existing layers. We learn a
generative ConvNet for each category, where the number of training images for
each category is around 10, and they are collected from the Internet. Fig. 7 shows
the results. For each category, the first row displays 4 of the training images, and
the second row shows 4 of the images generated by the learning algorithm.

8.3. Experiment 3: Contrastive divergence learns to reconstruct. We evaluate
the one-step contrastive divergence learning on a small training set of 10 images
collected from the Internet. The ConvNet structure is the same as in experiment 1.
For computational efficiency, we learn all the layers of filters simultaneously. The
number of learning iterations is T = 1200. Starting from the observed images, the
number of Langevin iterations is L = 1. Fig. 8 shows the results. The first row
displays 4 of the training images, and the second row displays the corresponding
auto-encoding reconstructions with the learned parameters.

9. General non-linearity. For general non-linearity, i.e., h(r) is not necessar-
ily ReLU or piecewise linear, some of the above results still hold. Let h′(r) be the
derivative of h(r), then the activation variables become

(9.1) δ
(l)
k,x(I;w) = h′

(
〈w(l)

k,x, F
(l−1) ∗ I〉+ bl,k

)
,

which is not binary in general, and the auto-encoding reconstruction

(9.2) Bw,δ(I;w) =
∂

∂I
f(I;w),

where f(I;w) is defined by (3.5). The Langevin dynamics (6.10) and the Hopfield
auto-encoder (6.11) in Proposition 2 still hold, but the piecewise Gaussian form
(6.9) in Theorem 1 is lost. The exact proportionality in Proposition 3 is also lost.
The crisp ReLU non-linearity is crucial for the simplicity of modeling and learning,
and should be kept as much as possible.

Equations (9.1) and (9.2) show that the top-down generation is actually the back-
propagation derivative (with respect to I instead of w) of the bottom-up recogni-
tion, i.e., representation = back-propagation.

We can also incorporate max pooling in the bottom-up computation, whose
derivative is arg-max retrieval in the top-down reconstruction.

10. Conclusion. The development of the generative ConvNet in this paper is
very natural, almost axiomatic, with minimal extra assumptions. Assuming the
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commonly used ReLU non-linearity and a Gaussian white noise base category,
the generative ConvNet is naturally derived from the discriminative ConvNet, and
we show that the model has a representational structure based on multiple layers
of binary activation variables. We also empirically show that the model can recon-
struct the observed images and synthesize new images. It is possible to generalize
the definition of the binary activation variables to take into account explaining-
away competitions for learning sharp dictionaries of filters and basis functions at
multiple layers.

Some of the results in this paper can be mapped to back-propagation in the
discriminative ConvNet, but our reinterpretation of them in terms of representa-
tion is novel and is richly expansive. Our paper unifies, reconciles or connects the
following antagonizing or disparate pairs: (1) discriminative ConvNet and genera-
tive CongNet, (2) supervised learning and unsupervised learning, (3) exponential
family models and latent variable models, (4) bottom-up filters (operation) and
top-down basis functions (representation), (5) synthesis (dream) and reconstruc-
tion (memory), (6) hierarchal probability model and hierarchical auto-encoder, (7)
Hopfield attractor network and auto-encoder, (8) contrastive divergence (learning)
and reconstruction (memory).

The generative ConvNet has the potential to learn from unlabeled data. In our
future work, we shall scale up the unsupervised learning from big unlabeled data
using reconstruction based methods. Our preliminary results suggest that it is pos-
sible to learn meaningful dictionaries of filters and that the learning is as fast as
the discriminative training of the ConvNet. We shall report our empirical findings
elsewhere.

APPENDIX A: CODE AND DATA

The code and training images can be downloaded from the project page: http:
//www.stat.ucla.edu/˜ywu/GenerativeConvNet/main.html
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