
Illustration

Hierarchical Sparse FRAME Model
 Representation
Let 𝐵𝑥,𝑠,𝛼 denote a basis function (e.g., Gabor wavelets) centered at

pixel 𝑥, tuned to scale 𝑠, and orientation 𝛼. Given a dictionary of basis

functions {𝐵𝑥,𝑠,𝛼 , ∀𝑥, 𝑠, 𝛼} . The model is a probability distribution

defined on image 𝐈,
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where the scoring function 𝑓 𝐈;𝐇, 𝜆 is
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𝑗 , 𝑖 = 1,… , 𝑛𝑗), 𝑗 = 1,… , 𝐾} is a template of 𝐾

groups of selected basis functions. Each group represents a part

template. 𝑛𝑗 is the number of basis functions in group 𝑗 . 𝜆 =

𝜆𝑖
𝑗

, 𝑖 = 1,… , 𝑛𝑗 , 𝑗 = 1,… , 𝐾} collects the parameters. 𝑞 𝐈 is a

known Gaussian white noise reference distribution.

In current implementation, we simply divide the image domain into

𝐾 = 𝑑 × 𝑑 non-overlapping parts, so that the basis functions within

each part form a group. The parts and the basis functions are allowed

to perturb their shift to account for shape deformation.

Unsupervised Learning
 Objective function
The learning of the hierarchical sparse FRAME model is to learn 𝐾

part templates 𝐁 𝑗 , 𝑗 = 1,… , 𝐾 from non-aligned training images

{𝐈𝑚, 𝑚 = 1,… ,𝑀} , while inferring the object locations 𝜒𝑚 , the part

perturbations (Δ𝑋𝑚,𝑗 , Δ𝑆𝑚,𝑗 , Δ𝐴𝑚,𝑗) , and the perturbations of basis

functions, by maximizing the objective function defined as the sum of

the log-likelihood given 𝐇 over all the training images,

σ𝑚=1
𝑀 𝐿(𝐈𝑚|𝐇𝜒𝑚) , subject to the constraint that there are no

overlapping parts in each 𝐈𝑚.

 EM-type learning

E-step: Inference. Given the current 𝐇, we match it to each image 𝐈𝑚
by inferring the location of the object and the perturbations in locations,

scales and rotations of 𝐾 parts, as well as the perturbations of all

basis functions in each part by recursive SUM-MAX maps:

Up-1: compute the Gabor wavelet matching score

SUM1 𝑥, 𝑠, 𝛼 = | < 𝐈, 𝐵𝑥,𝑠,𝛼 > |, ∀ 𝑥, 𝑠, 𝛼

Up-2: compute MAX1 by local maximization to account for shifts of 
Gabor wavelets

MAX1 𝑥, 𝑠, 𝛼 = max
∆𝑥,∆𝛼

SUM1(𝑥 + ∆𝑥, 𝑠, 𝛼 + ∆𝛼) , ∀ 𝑥, 𝑠, 𝛼

Up-3: compute matching scores of 𝐾 part templates

SUM2(𝑗) 𝑋 =
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Up-4: compute MAX2 by local maximization to account for shifts of part 

templates

MAX2(𝑗) 𝑋 = max
Δ𝑋

SUM2 𝑗 𝑋 + Δ𝑋 , ∀𝑋, 𝑗

Up-5: compute the matching score of the object template for all locations

SUM3 𝜒 =

𝑗=1

𝐾

MAX2 𝑗 (𝜒 + 𝑋𝑗) , ∀𝜒

Up-6: compute the optimum matching score of H

MAX4 = max
𝜒

SUM3 𝜒

Down-1: compute the location of the object on the image  

ǁ𝜒 = arg max
𝜒

SUM3 𝜒

Down-2: compute the perturbations of all parts on the image

Δ𝑋𝑗 = arg max
Δ𝑋

SUM2 𝑗 ǁ𝜒 + 𝑋𝑗 + Δ𝑋 , ∀𝑗

Down-3: compute the perturbations of Gabor wavelets in all parts on the 

image
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M-step: Re-learning. Given the inferred deformation, we first align the

objects and parts by morphing the corresponding images patches, and re-

learn the model by the two-stage algorithm:

Stage-1: a shared sparse coding scheme is used to select 𝐁 = {𝐵𝑥𝑖,𝑠𝑖,𝛼𝑖 , 𝑖 =

1,… , 𝑛} by minimizing the overall least squares reconstruction error
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Stage-2: After selecting 𝐁 = {𝐵𝑥𝑖,𝑠𝑖,𝛼𝑖 , 𝑖 = 1,… , 𝑛} , we (1) estimate the

corresponding weight parameters
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where ሚ𝐈𝑚, 𝑚 = 1,… , ෩𝑀 are synthesized images sampled from 𝑝(𝐈; 𝜆(𝑡)) by

Hamiltonian Monte Carlo (HMC), 𝛾𝑡 is the step size; and (2) estimate the

normalizing constant 𝑍 by starting from 𝜆(0) = 0 , log 𝑍 𝜆 0 = 0 and

computing log 𝑍 𝜆 𝑡 along the learning process by

log 𝑍 𝜆 𝑡+1 = log 𝑍 𝜆 𝑡 + log
𝑍(𝜆(𝑡+1))
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Abstract
This paper proposes a method for generative learning of

hierarchical random field models. The resulting model, which

we call the hierarchical sparse FRAME (Filters, Random

field, And Maximum Entropy) model, is a generalization of

the original sparse FRAME model by decomposing it into

multiple parts that are allowed to shift their locations, scales

and rotations, so that the resulting model becomes a

hierarchical deformable template. The model can be trained

by an EM-type algorithm that alternates the following two

steps: (1) Inference: Given the current model, we match it to

each training image by inferring the unknown locations,

scales, and rotations of the object and its parts by recursive

sum-max maps, and (2) Re-learning: Given the inferred

geometric configurations of the objects and their parts, we

re-learn the model parameters by maximum likelihood

estimation via stochastic gradient algorithm. Experiments

show that the proposed method is capable of learning

meaningful and interpretable templates that can be used for

object detection, classification and clustering.

Experiments
 Evaluating mixture models by clustering tasks
A mixture of hierarchical sparse FRAME models can be trained in an unsupervised manner by an EM-type

algorithm that iterates: (1) classifying images into different clusters based on the current model (2) re-learning the

model of each cluster from images. Conditional purity and conditional entropy are used to measure the clustering

performance. Table below summarizes the comparisons with other methods by showing the average accuracies

based on 5 repetitions for 12 clustering tasks.

 Object, part, and key point localization
We evaluate the accuracy of the inference of our model on detection tasks. The performance of detection is

measured by evaluating the accuracy of localizing key points, parts, and objects. We plot imprecision-recall curves

(e.g., 2 examples shown in Fig. 1) and use area under curve (AUC) to measure the performance of the localization

of key points. Table below displays the average AUCs over 8 categories. Fig. 2 display some detection results.

 Evaluating unsupervisedly learned models via classification
We use the LHI-Animal-Faces dataset. For each category, we learn a mixture model of 5 or 11 hierarchical sparse

FRAME models with 2 × 2 moving parts in an unsupervised manner. We then combine the object templates from

all the learned mixture models into a codebook of 20 × 5 = 100 or 20 × 11 = 220 codewords. The maps of

template matching scores from all the codewords in the codebook are computed for each image and then they are

fed into spatial pyramid matching (SPM) to obtain feature vectors. SVM classifiers with L2 loss are trained on

these vectors, and are evaluated on the testing data in terms of classification accuracies.

Conclusion
This paper proposes a generative learning framework applied to hierarchical representations of object patterns.
Our model is defined as a hierarchical extension of the original sparse FRAME model. The model is capable of
capturing geometric deformations and can be learned in an unsupervised manner. It can be visualized by MCMC
sampling. Compared to previous generative hierarchical leaning methods, our method performs better in terms of
accuracies of localization of object, parts, and key points in detection, object classification, and clustering.

Reproducibility
http://www.stat.ucla.edu/~jxie/hsFRAME.html
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# clusters AOT [4] Ours w/o parts Ours

5 65.80% 70.62% 74.33%

11 62.54% 72.56% 75.83%

tasks Object part Key point

ours AOT [4] LSVM [5] ours AOT LSVM ours AOT LSVM

Avg. 0.859 0.785 0.727 0.868 0.793 0.732 0.867 0.795 0.730

Measure ours Sparse 
FRAME

Generative 
Boosting [1]

Active 
basis [2]

Two-step 
EM [3]

K-means 
+ HoG

AOT [4]

purity 0.962 0.928 0.923 0.815 0.798 0.788 0.849

entropy 0.083 0.174 0.159 0.365 0.419 0.408 0.291
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