| 
Contents 1: Object, part, and key point localization 2: Imprecision-recall curves 3: Quantitative evaluation 4: Reference  | 
(ground truth for key points/ our models / AOT / DPM)
Bear Cat Cougar Cow Deer Lion Tiger Wolf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  
 
 
  
 
 
  
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
   
 
 
  
 
 
  
 
 
  
 
 
  
 
 
  
 
Cat

 
Lion 
 
 
Tiger 
 
 
Wolf 
 
 
Deer 
 
 
Cougar 
 
 
Cow 
 
 
Bear 
 
 
Tasks  | 
    Object  | 
    Part  | 
    Key point   | 
  ||||||
ours  | 
    AOT  | 
    LSVM  | 
    ours  | 
    AOT  | 
    LSVM  | 
    ours  | 
    AOT  | 
    LSVM  | 
  |
cat   | 
    0.954  | 
    0.949  | 
    0.700  | 
    0.955  | 
    0.950  | 
    0.718  | 
    0.954  | 
    0.949  | 
    0.700  | 
  
lion   | 
    0.879  | 
    0.842  | 
    0.834  | 
    0.908  | 
    0.856  | 
    0.830  | 
    0.907  | 
    0.857  | 
    0.834  | 
  
tiger  | 
    0.954  | 
    0.948  | 
    0.744  | 
    0.956  | 
    0.950  | 
    0.744  | 
    0.954  | 
    0.948  | 
    0.744  | 
  
wolf  | 
    0.857  | 
    0.774  | 
    0.741  | 
    0.888  | 
    0.826  | 
    0.750  | 
    0.887  | 
    0.825  | 
    0.741  | 
  
deer  | 
    0.738  | 
    0.675  | 
    0.559  | 
    0.736  | 
    0.673  | 
    0.570  | 
    0.738  | 
    0.676  | 
    0.565  | 
  
cougar  | 
    0.960  | 
    0.936  | 
    0.831  | 
    0.961  | 
    0.939  | 
    0.825  | 
    0.960  | 
    0.938  | 
    0.831  | 
  
cow  | 
    0.757  | 
    0.549  | 
    0.663  | 
    0.762  | 
    0.546  | 
    0.670  | 
    0.763  | 
    0.556  | 
    0.673  | 
  
bear  | 
    0.769  | 
    0.607  | 
    0.744  | 
    0.776  | 
    0.605  | 
    0.745  | 
    0.773  | 
    0.611  | 
    0.751  | 
  
Avg.  | 
    0.859  | 
    0.785  | 
    0.727  | 
    0.868  | 
    0.793  | 
    0.732  | 
    0.867  | 
    0.795  | 
    0.730  | 
  
[1] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010) Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence.
  [2] Si, Z., & Zhu. S. C. (2013) Learning and-or templates for object recognition and detection. IEEE transactions on pattern analysis and machine intelligence.