Contents 1: Object, part, and key point localization 2: Imprecision-recall curves 3: Quantitative evaluation 4: Reference |
(ground truth for key points/ our models / AOT / DPM)
Bear Cat Cougar Cow Deer Lion Tiger Wolf
Cat
Cougar
Cow
Deer
Lion
Tiger
Wolf
Cat
Lion
Tiger
Wolf
Deer
Cougar
Cow
Bear
Tasks |
Object |
Part |
Key point |
||||||
ours |
AOT |
LSVM |
ours |
AOT |
LSVM |
ours |
AOT |
LSVM |
|
cat |
0.954 |
0.949 |
0.700 |
0.955 |
0.950 |
0.718 |
0.954 |
0.949 |
0.700 |
lion |
0.879 |
0.842 |
0.834 |
0.908 |
0.856 |
0.830 |
0.907 |
0.857 |
0.834 |
tiger |
0.954 |
0.948 |
0.744 |
0.956 |
0.950 |
0.744 |
0.954 |
0.948 |
0.744 |
wolf |
0.857 |
0.774 |
0.741 |
0.888 |
0.826 |
0.750 |
0.887 |
0.825 |
0.741 |
deer |
0.738 |
0.675 |
0.559 |
0.736 |
0.673 |
0.570 |
0.738 |
0.676 |
0.565 |
cougar |
0.960 |
0.936 |
0.831 |
0.961 |
0.939 |
0.825 |
0.960 |
0.938 |
0.831 |
cow |
0.757 |
0.549 |
0.663 |
0.762 |
0.546 |
0.670 |
0.763 |
0.556 |
0.673 |
bear |
0.769 |
0.607 |
0.744 |
0.776 |
0.605 |
0.745 |
0.773 |
0.611 |
0.751 |
Avg. |
0.859 |
0.785 |
0.727 |
0.868 |
0.793 |
0.732 |
0.867 |
0.795 |
0.730 |
[1] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010) Object detection with discriminatively trained part-based models. IEEE transactions on pattern analysis and machine intelligence.
[2] Si, Z., & Zhu. S. C. (2013) Learning and-or templates for object recognition and detection. IEEE transactions on pattern analysis and machine intelligence.