
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Top-Down Generative Models by
Short-Run Markov Chain Monte Carlo Inference

with Optimal Transport Correction
Dongsheng An, Jianwen Xie, Ping Li

Abstract—Learning top-down generative models with latent variables via maximum likelihood typically requires to infer latent variables
for each training example based on the posterior distribution of latent variables. The inference step relies on either running a
time-consuming long-run Markov chain Monte Carlo (MCMC) sampling from the posterior distribution or constructing a separate inference
model for variational learning. In this paper, we propose to use an efficient short-run MCMC, such as Langevin dynamics, as an
approximate inference engine. The bias in the aggregated posterior distribution of the inferred latent variables obtained by the
non-convergent short-run MCMC is corrected by optimal transport (OT), which aims at transforming the biased distribution to the prior
distribution with minimum transport cost. The proposed algorithm alternates the short-run MCMC inference step, the OT correction step,
and the parameter learning step. In each iteration, with more reliable latent variables obtained from the inference step and the correction
step, the parameter learning step can be more accurate. Our experiments not only verify the effectiveness of the OT correction for the
short-run MCMC inference, but also demonstrate that the generative models trained by the proposed strategy outperform the variational
auto-encoder and the MCMC inference without using OT correction in the tasks of image reconstruction, image generation, image
inpainting, anomaly detection and unsupervised image recovery.

Index Terms—Deep generative models, Top-down generator, Latent variable model, Short-run MCMC, Langevin dynamics, Optimal
transport, image synthesis, image recovery, unsupervised learning

F

1 INTRODUCTION

G ENERATIVE model is a powerful tool to learn any kind
of data distribution in an unsupervised manner. The goal

of all types of generative models is to estimate the true data
distribution from some observed training data so as to generate
novel and realistic data examples. Training generative models
is not only a fundamental problem in statistics and machine
learning, but also important to unsupervised and semi-supervised
learning applications in artificial intelligence and computer vision.
In general, generative models can be categorized into two classes,
which differ in the following aspects: (i) Explicit density v.s. implicit
density: A generative model can represent a data distribution either
explicitly or implicitly. From the model perspective, the generative
model with an explicit probability density of the data is typically
in the form of energy-based model [1] or Markov random field
model [2], while the generative model with an implicit density is
in the form of latent variable model, which typically assumes the
data to be generated from some latent variables that follow a prior
distribution, so that the probability density of the data is implicit
because it can be obtained by integrating out the latent variables
but this integral is analytically intractable. (ii) implicit generation
v.s. explicit generation: All generative models have potentials to
generate data from the learned explicit or implicit distributions.
From the generation perspective, the “explicit” model generates
data via an implicit way, in which an iterative Markov chain Monte
Carlo (MCMC) [3], [4] sampling process is required to explore
and discover local modes in the learned distribution, while the

• D. An, J. Xie, and P. Li are with Cognitive Computing Lab, Baidu
Research, 10900 NE 8th St. Bellevue, WA 98004, USA. E-mail: dong-
shengan15@gmail.com, jianwen.kenny@gmail.com, pingli98@gmail.com.

Manuscript received xxx, 2021.

“implicit” model generates data in a more explicit way where it
first samples the latent variables from the prior distribution and
then transforms them to the data. This is called ancestral sampling.
(iii) bottom-up descriptive v.s. top-down generative: According
to the terminology of [5], the “explicit” generative model is also
called the descriptor model, since the probability density is built
on descriptive feature statistics computed from the input data by a
bottom-up process. The “implicit” generative model is defined by a
top-down structure, which directly maps the latent variables to the
data. Such a model is also called the generator model following [6].
In this paper, we only study the top-down generative model, which
is of the form of the latent variable model that lacks a close form
of probability distribution of the data but is easy to generate data.

Thanks to the powerful approximation ability of deep neural
networks, recent years have seen a great success of deep top-
down generative models in numerous computer vision and machine
learning applications, such as image generation and synthesis [6],
[7], [8], [9], [10], [11], [12], image recovery [13], [14], [15], [16],
[17], image representation [18], [19], image disentanglement [20],
[21], [22], anomaly detection [23], [24], zero-shot learning [25],
[26], salient object prediction [27], [28], video generation [29],
[30], [31], [32] etc. Such models typically include simple but
expressive deep generator networks, which generate each observed
example from a low-dimensional vector of latent variables, and
the latent vector is assumed to follow a non-informative prior
distribution, such as Gaussian white noise distribution. Since high-
dimensional visual data (e.g., images and videos) usually lie on low-
dimensional manifolds, learning latent variable models of visual
data is of fundamental importance in the field of computer vision
for the sake of unsupervised feature learning and disentangled
representation learning. In the likelihood-based training of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

top-down generative models, the challenge mainly comes from
the inference of the latent variables for each observation, which
typically relies on MCMC methods to draw fair samples from the
analytically intractable posterior distribution (i.e., the conditional
distribution of the latent variables given the observed example).
Since the top-down generative model is parameterized by a highly
non-linear deep neural network, the derived posterior distribution
of the latent variables is also parameterized by the deep neural
network and is highly intractable. Therefore, the MCMC inference
is very challenging and may suffer from the non-convergence and
inefficiency problems, which might further affect the accuracy of
the subsequent model parameter estimation.

To avoid the inefficient MCMC sampling from the posterior
distribution, the variational inference, such as the variational auto-
encoder (VAE) [9], becomes an attractive alternative by approximat-
ing the intractable posterior distribution with a tractable network.
This amortized inference requires an additional minimization of the
Kullback-Leibler (KL) divergence between the posterior and the
approximating inference network. Despite the growing prevalence
and popularity of the VAE, its drawbacks are increasingly obvious
and can not be neglected. (i) In variational inference, the model
parameterizes the intrinsic iterative inference process by an
extrinsic feedforward inference model. These extra parameters
in the inference model due to the reparameterization have to be
estimated together with those of the main generator network. This
may distinctly increase not only the model size in terms of the
number of trainable parameters but also the training difficulty.
(ii) The joint training of the generator and the inference model
in the VAE is to be accomplished by maximizing the variational
lower bound. Thus, the accuracy of VAE heavily depends on the
accuracy of the inference model as an approximation of the true
posterior distribution. Theoretically, only when the KL divergence
between the inference model and the posterior distribution is
minimized to zero, the variational inference is equivalent to the
desired maximum likelihood estimation. However, this goal is
usually infeasible in practice because of the limited capacity of the
designed inference model and the suboptimal solution obtained in
the optimization process. (iii) An extra effort is required to made in
designing the inference model of VAE, especially for the top-down
generators that have complicated dependency structures with the
latent variables, e.g., Nijkamp et al. [12] proposed a top-down
generator with multiple layers of latent variables and Xie et al. [30],
[31] proposed dynamic generators with time sequences of latent
variables. It is not a simple task to design approximating inference
models that infer latent variables for models mentioned above.
An arbitrary design of the inference model cannot guarantee the
performance of the VAE. The VAE model may often suffer from
oversimplified posterior approximations.

In this paper, we will totally abandon the idea of reparameteriz-
ing the inference process, and will reuse the MCMC inference for
training top-down generative models (i.e., deep latent variable
models). The reasons why we stick to MCMC inference are
that: (i) There has been a great progress of studying variational
inference and VAEs recently, but the advance of the MCMC
inference for likelihood-based learning of generative models is
still lagging behind. We aims at pushing forward the MCMC
inference, given that it has so many appealing advantages; (ii) The
recent advances of the maximum likelihood estimation (MLE) of
generative models with MCMC inference, such as [11], [12], [24],
[30], have demonstrated the potential of the MCMC inference. We
are encouraged to further investigate and improve the training of

top-down generative models using MCMC inference.
To be specific, we study using a short-run MCMC, such

as a short-run Langevin dynamics [33], [34], to perform the
inference of the latent vectors during model training. The short-
run MCMC is always initialized from the same distribution, such
as the Gaussian noise distribution, and performed with the same
number of Langevin steps. However, the convergence of finite-step
Langevin dynamics in each iteration might be questionable, so we
accept the bias existing in such a short-run MCMC inference and
propose to use the optimal transport (OT) method [35] to correct the
bias. The OT can be adopted to transform an arbitrary probability
distribution to a desired distribution with a minimum transport cost.
Thus, we can use the OT cost to measure the difference between
two probability distributions. We treat the short-run MCMC as
a learned flow model whose parameters are from the top-down
generative model. Even though the short-run MCMC is toward the
posterior distribution, its actual output marginal distribution might
not exactly follow the assumed prior distribution. In this paper, we
not only validate the above phenomenon but also propose to correct
the bias of the short-run MCMC by performing an optimal transport
from the resulting distribution produced by the short-run MCMC
to the target prior distribution. This operation is to minimize the
OT cost between the aggregated inference distribution and the prior
distribution, in which we don’t directly optimize any parameters
in the flow-like short-run MCMC model but update or correct the
errors in the output. With the corrected inference output, we can
update the parameters of the top-down generative model more
accurately. As a matter of fact, the trustingly updated model would
improve the accuracy of the posterior distribution in return, thus
further influencing the short-run MCMC inference in the next step.

Specifically, the algorithm proposed in this paper iterates the
following three steps: (i) inference step: inferring the latent vari-
ables for each observed example by a short-run Langevin dynamics
that aims at drawing samples from the posterior distribution; (ii)
correction step: moving the whole population of all the inferred
latent vectors to the prior distribution that is assumed in the top-
down generative model through optimal transport; (iii) learning
step: update the model parameters by gradient descent based
on the corrected versions of the inferred latent vectors and the
corresponding observed examples.

There are several advantages in the proposed algorithm: (i)
efficiency: The learning and inference processes of the model
are efficient with a short-run MCMC using a finite number of
Langevin steps. Compared to the traditional long-run MCMC
inference, the short-run MCMC inference is less time-consuming.
In contrast to the variational inference, the short-run MCMC
inference is less memory-consuming. (ii) convenience: once the
network architecture of the top-down generative model is designed,
the approximate inference model represented by the short-run
MCMC is automatic and immediately ready in the sense that
there is nothing to worry about the design and training of a
separate inference model. Both bottom-up inference and top-down
generation are governed by the same set of parameters. The unified
framework is not only naturally elegant but also statistically rigours.
(iii) accuracy: the optimal transport corrects the errors of the non-
convergent short-run MCMC inference, thus improves the accuracy
of the model parameter estimation.

The contributions of the paper are three-fold: (i) We propose
to train a top-down deep generative model or a deep latent
variable model by a non-convergent short-run MCMC inference
with OT correction. This is the first paper to combine the non-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

convergent short-run MCMC and the OT theory to train deep
generative models. (ii) We extend the semi-discrete OT algorithm
to approximate the one-to-one map between the inferred latent
vectors and the samples drawn from the prior distribution in our
settings. (iii) We provide strong empirical results in our experiments
to verify the effectiveness of the proposed strategy to train deep top-
down generative models, including image reconstruction, image
generation, anomaly detection, and supervised image inpainting.
(iii) Based on our proposed MCMC-OT learning strategy, we further
propose an unsupervised learning algorithm to train top-down
generative models from incomplete data, such that our algorithm
can be useful for unsupervised image inpainting.

2 RELATED WORK

In this section, we review prior works related to the proposed
framework in our paper.

Variational inference. To avoid the computationally expensive
MCMC inference step in the MLE training, variational auto-
encoder (VAE) [9] is a popular method to learn top-down generator
network by simultaneously training a tractable inference network
to approximate the intractable posterior distribution of the latent
variables. This is also called reparameterization trick. The VAE,
as one of the powerful likelihood-based generative models, has
been successfully applied to image generation [36], [37], video
generation [38], point cloud generation [39], image captioning [40],
saliency prediction [28], continual learning [41], [42], etc. However,
in VAE, one needs to design an inference model for the latent
variables, which is a non-trivial task in a generator network with
complex architecture. Our method does not rely on an extra
inference model to assist the training. It performs inference by short-
run Langevin sampling from the posterior distribution, followed
by an optimal transport correction. Despite the great success of
VAEs, several studies have shown that VAE prior fails to match
the aggregate approximate posterior [43], [44]. Such a bias due
to the approximate inference would lead to undesired regions in
the latent space that are not decoded to meaningful data examples.
These regions often have densities under the prior distribution but
have low densities under the aggregate approximate posterior. The
mismatching between the prior and the aggregate approximate
posterior causes bad quality of the synthesized data. Although our
method doesn’t belong to variational inference or VAE, we also
study the mismatching problem between the prior and the aggregate
posterior of the short-run MCMC inference. In our framework, we
propose to use the optimal transport theory to correct mismatching.

Alternating back-propagation algorithm. The maximum
likelihood learning of the top-down generator network, including
its dynamic version, can be achieved by the alternating back-
propagation (ABP) algorithm [11], [30], without resorting to an
inference model. The ABP algorithm trains the generator model by
alternating the following two steps: (i) inference step: inferring the
latent variables for each training example by Langevin sampling
from the posterior distribution, and (ii) learning step: updating the
model parameters based on the training data and the corresponding
inferred latent variables by the gradient descent optimizer. The
former step involves the computation of the gradient of the
generator network with respect to the latent variables, while the
latter step involves the computation of the gradient of the generator
network with respect to the parameters. Both steps compute the
gradients conveniently and efficiently with the power of back-
propagation due to the differentiability of the network. This is

the origin of the name of the algorithm. The ABP algorithm has
been successfully applied to self-supervised saliency detection [27],
zero-shot learning [26], video generation [45], multi-view image
generation [46], unsupervised disentanglement of appearance and
deformation in images [47], unsupervised disentanglement of
appearance, trackable and intrackable motions in videos [31], etc.
The ABP algorithm has been extended to model flexible and
informative latent prior in [24], where the top-down generator
adopts a trainable energy-based model (EBM) [1] as the prior
distribution instead of a Gaussian distribution. The usage of the
latent EBM prior in the generator leads to a change of the ABP
algorithm, which is an extra MCMC sampling step from the EBM
prior distribution for estimating the parameters of the EBM. [48]
proposes to use a short-run MCMC for approximate inference
of latent variables in the inference step of the ABP algorithm,
and provides a variational optimization method to determine the
optimal step size of the short-run MCMC. Our method also uses a
short-run MCMC for inference but adopts a different strategy, i.e.,
optimal transport, to correct the bias due to the non-convergence
of the short-run MCMC inference. Our framework belongs to the
ABP family in the sense that it improves the ABP algorithm by
using the optimal transport theory.

Optimal Transport (OT). OT is used to compute the distance
between two measures and is able to push forward the source
distribution to the target distribution [35], [49]. Recently, OT has
been widely used in generative models to help generate high quality
samples. For example, by replacing the original KL-divergence
in the generative adversarial networks (GANs) [6] with the
Wasserstein-1 distance, Arjovsky et al. [8] propose the WGAN
model to achieve better convergence and generate higher quality
samples. To satisfy the Lipschitz condition required by computing
the W1 distance in the discriminators, Gulrajani et al. [50] use
the weight clipping and Miyato et al. [51] propose the spectral
normalization. Tolstikhin et al. [52] propose the Wasserstein
variational auto-encoder that minimizes the Wasserstein distance
between the inference model and the posterior distribution. With
the Wasserstein-2 distance, Korotin et al. [53] introduce a novel end-
to-end non-minimax algorithm for training the generative models
by using the recently proposed Input Convex Neural Networks
(ICNNs) [54]. Besides the Wasserstein distance, the optimal
transport is also used to transport a simple uniform distribution to
the complex latent feature distribution extracted by the autoencoder
for image generation [55], [56].

There are typically three settings for the OT problems based
on the different source and target distributions. (i) When both the
source and target measures are continuous and admit the corre-
sponding density functions, according to the Brenier theorem [57],
solving the OT problem is equivalent to finding the solution of
the famous Monge-Amperè equation with the squared Euclidean
distance [35], [58]. By linearizing this complex variant coefficient
elliptic partial differential equation (PDE) in each iteration, it
is converted to a positive definite linear system using the finite-
difference scheme and can be solved by the BiCG algorithm [59].
Later, Benamou et al. [60] propose to solve this PDE on more
general domains using Newton’s method. But these algorithms
are limited to the low-dimensional OT problems. To solve the
high dimensional problem, we can use the recent proposed Input
Convex Neural Networks (ICNNs) [54] to approximate the convex
Brenier potential. (ii) If the source measure is continuous, and the
target measure is discrete, it is called the semi-discrete OT problem.
With the squared Euclidean distance, the Brenier potential, whose

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

gradient gives the OT map, can be represented by a piecewise linear
convex function. For low dimensional problems, Gu et al. [61]
propose to solve this problem by optimizing a convex energy
by computing its gradient and Hessian matrix through convex
geometry. Later, An et al. [55] extend this method to solve the high
dimensional problems by estimating the gradient through Monte
Carlo sampling. (iii) When both the source and target measures
are discrete, the discrete OT problem can be directly solved by
linear programming with computational complexity O(n3), which
is prohibitively high if n is large. To solve this problem, Cuturi [62]
adds an entropy regularizer to the prime problem and then uses
the Sinkhorn algorithm to solve the regularized problem with
computational complexity Õ(n2/ε2) [63]. Recent methods on
solving the discrete OT problems generalize this idea by introducing
different regularizers [64], [65] or solving larger scale problems
via stochastic method [66], [67]. But unlike the continuous or the
semi-discrete settings whose solvers obtain the exact solutions
of the OT map, this kind of methods can only give approximate
solutions of the OT plan and cannot reconstruct the corresponding
OT map.

In the following, we directly solve the Kantorovich dual
problem in the discrete settings through stochastic gradient descent,
and then recover the approximate OT map efficiently.

3 MAXIMUM LIKELIHOOD LEARNING OF TOP-
DOWN GENERATIVE MODEL

3.1 Factor analysis model

We start from the factor analysis model, which is a prototype of the
top-down generative model. Let I be a D-dimensional observed
data example, such as an image. Let z be the d-dimensional
vector of continuous unobserved latent variables, from which the
observed data are assumed to be generated. The traditional factor
analysis model assumes that each observed data example is a liner
transformation of an unobserved latent vector of variables and
is modeled by I = Θz + ε, where Θ is a D × d matrix, ε is a
D-dimensional residual vector following Gaussian distribution, i.e.,
ε ∼ N (0, σ2ID), and the latent vector z also follows Gaussian
distribution, i.e., z ∼ N (0, σ2Id). Id and ID are d-dimensional
and D-dimensional identity matrices, respectively. In general, d
is assumed to be much less than D, i.e., d � D. The matrix Θ
contains all the parameters of the model, and z is said to be a
vector representation (or a code) of I. Suppose we observe a set of
data examples {Ii}, the goal of learning a factor analysis model
is to estimate Θ while inferring {zi}, which is an unsupervised
learning problem and can be accomplished by maximum likelihood
via the expectation-maximization (EM) algorithm.

3.2 Generator Network

Generalizing from traditional factor analysis model, the generator
network assumes the observed example I is generated from a
latent vector z by a non-linear transformation I = gθ(z) + ε,
where gθ is a top-down convolutional neural network (sometime
called deconvolutional neural network) with parameters θ that
consist of all trainable weights and bias terms in the network,
ε ∼ N (0, σ2ID) is the observation error, and z ∼ N (0, Id). We
assume d� D. The generator network is essentially a non-linear
factor analysis model that defines the joint distribution of (I, z),

pθ(I, z) = pθ(I|z)p(z), (1)

where we assume the prior distribution p(z) = N (0, Id) and
p(I|z) = N (gθ(z), σ

2ID). The standard deviation σ takes an
assumed value. Following the Bayes rule, we can easily obtain
the marginal distribution pθ(I) =

∫
pθ(I, z)dz, and the posterior

distribution pθ(z|I) = pθ(I, z)/pθ(I) = pθ(I, z)/
∫
pθ(I, z)dz.

3.3 Maximum likelihood learning

Given a set of training examples {Ii, i = 1, . . . , n} ∼ pdata(I),
where pdata(I) is the unknown data distribution. We can train pθ
by maximizing the log-likelihood of the training samples

L(θ) =
1

n

n∑
i=1

log pθ(Ii), (2)

which is equivalent to minimizing the KL-divergence between
the true data distribution pdata(I) and the model pθ(I) when the
number of training examples n is large enough [11]. To be specific,

KL(pdata(I)||pθ(I))

=Epdata(I)

[
log

pdata(I)

pθ(I)

]
=Epdata(I)[log pdata(I)]− Epdata(I)[log pθ(I)],

(3)

where the left term is the entropy of the data distribution that is
independent to the model parameter θ, therefore we have

arg min
θ

KL(pdata(I)‖pθ(I))

= arg max
θ

Epdata(I)[log pθ(I)]

≈ arg max
θ

1

n

n∑
i=1

log pθ(Ii) = arg max
θ
L(θ),

(4)

where we use the law of large number to obtain the final equation.
Eq. (4) provides an interpretation of the behavior of MLE, i.e.,
maximizing the data likelihood of the model is equal to minimizing
the difference between the model and the data distribution. We can
see that MLE is a proxy to fit the model to the data distribution,
which cannot be achieved directly because the data distribution is
unknown to us.

The maximization of the log-likelihood function presented in
Eq. (2) can be accomplished by gradient ascent algorithm that
iterates

θt+1 = θt + γt
1

n

n∑
i=1

∇θ log pθ(Ii), (5)

where γt is the learning rate depending on time t and is typically
scheduled to decay over time. The gradient of the log probability
is given by

∇θ log pθ(I) =
1

pθ(I)
∇θpθ(I)

=
1

pθ(I)
∇θ
[∫

pθ(I, z)dz

]
=

∫
[∇θ log pθ(I, z)]

pθ(I, z)

pθ(I)
dz

= Epθ(z|I)[∇θ log pθ(I, z)].

(6)

Epθ(z|I)[·] denotes the expectation under the posterior distribution
pθ(z|I), which is analytically intractable and can be approximated
by MCMC. To compute ∇θ log pθ(I) in Eq. (6), we need to
estimate the gradient of the logarithm of the joint distribution with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

respect to the model parameters ∇θ log pθ(I, z). According to
Eq. (1), the logarithm of the joint distribution is given by

log pθ(I, z) = − 1

2σ2
‖I− gθ(z)‖2 −

1

2
‖z‖2 + const, (7)

where the constant term is independent of the latent vector z or
parameters θ, thus ∇θ log pθ(I, z) = 1

σ2 (I − gθ(z))∇θgθ(z),
where ∇θgθ(z) can be efficiently computed by back-propagation.

4 SHORT-RUN MCMC INFERENCE

4.1 Long-run Langevin dynamics
To learn the model parameter θ by using Eq. (5), the key is to
compute the intractable expectation term in Eq. (6), which can be
achieved by first drawing samples from pθ(z|I) and then using
the Monte Carlo sample average to approximate it. Given a step
size s > 0, and an initial value z0, Langevin dynamics [33], [68],
which is a gradient-based MCMC method, can produce samples
from the posterior density pθ(z|I) by recursively computing

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, (8)

where k indexes the time step of Langevin dynamics, ξk ∼
N (0, Id) is a random noise diffusion that helps escape from local
modes. Also,∇z log pθ(z|I) = 1

σ2 (I−gθ(z))∇zgθ(z)−z, where
∇zgθ(z) can be efficiently computed by back-propagation.

Let us use K to denote the number of Langevin steps. When
s → 0 and K → ∞, no matter what the initial distribution of
z0 is, zK will converge to the posterior distribution pθ(z|I) and
become a fair sample from pθ(z|I). A Metropolis-Hastings step
may be added to correct for the finite step size s, but this step is
often ignored in practice, such as [11], [26], [27], [30], for the
purpose of efficient computation.

4.2 Short-run Langevin dynamics
With limited affordable computational resources, it is not sensible
or realistic to use a long-run MCMC to train the model. Also, the
target posterior distribution that we sample can be highly complex
such that the Langevin chains have no hope to converge. Therefore,
within each iteration, running a finite number of Langevin steps
for inference toward pθ(z|I) appears to be practical and inevitable.
Thus, a short-run K-step Langevin dynamics is given by

z0 ∼ p0(z),

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, k = 1, ..,K.

(9)

The initial distribution p0(z) is assumed to be the Gaussian white
noise distribution in this paper. Following [12], such a dynamics
can be treated as a conditional generator that transforms a random
noise z0 to the target distribution under the condition I. And the
transformation itself can also be treated as a K-layer residual
network, where each layer shares the same parameters θ and has a
noise injection. We use κθ to denote the K-step MCMC transition
kernel. The conditional distribution of zK given I is

qθ(z
K |I) =

∫
p0(z0)κθ(z

K |z0, I)dz0, (10)

and the corresponding marginal distribution of zK , or also called
the aggregated posterior distribution, is

qθ(z
K) =

∫
qθ(z

K |I)pdata(I)dI. (11)

If the MCMC converges, qθ(zK) should be close to the prior
distribution p(z), otherwise there is a gap between them. A short-
run MCMC with finite steps of Langevin update is certainly a
non-convergent MCMC since each zK is highly dependent on
its initialization z0. Training a top-down generative model with a
non-convergent MCMC inference will cause a biased estimation
of the model parameters. Especially, using non-convergent {zKi }
as inferred latent vectors to update θ in the learning stage will
lead to a failure of data generation initialized from the prior in the
testing stage. The reason is because the generator network gθ is
trained to connect the samples from the biased aggregated posterior
distribution qθ(zK), which deviates from the prior, and the data
examples from the data distribution pdata(I). There is no way to
use such a biased generator network to synthesize realistic examples
by transforming random samples from the prior distribution p0(z).

Eq. (9) is also called the noise-initialized short-run MCMC,
where for each step of parameter update, the short-run MCMC
starts from the noise distribution z0 ∼ p0(z). If the short-run
MCMC is initialized by the inferred results obtained in previous
iteration, it is called the persistent short-run MCMC.

Despite the efficiency of the short-run MCMC inference in
Eq. (10), it might not converge to the true posterior distribution
pθ(z|I). Some prior works have started to investigate how to
address the discrepancy between prior and aggregated posterior.
For example, [12] treats the short-run MCMC as an approximate
inference model and optimizes the step size s by variational
inference, in which the step size s is optimized via either a grid
search or gradient descent, so that the short-run MCMC qs(z|I)
(here s is the learning parameter) can best approximate the posterior
distribution pθ(z|I). Our paper focuses on the same goal to deal
with the bias of the short-run MCMC inference in the context of
learning top-down generative models.

5 MCMC INFERENCE WITH OT CORRECTION

In this paper, we propose to use optimal transport to correct the
bias of the short-run inference results. Instead of minimizing the
difference between the short-run inference model and the true
posterior, i.e., KL(qθ(z

K |I)|pθ(z|I)), we use OT to minimize the
transport cost between the aggregated posterior distribution qθ(zK)
of the latent variables inferred by the short-run Langevin dynamics
and the prior distribution p0(z).

5.1 OT correction for biased short-run MCMC

To be specific, for learning a top-down generative model I = gθ(z)
that generates an observed image I from a latent vector z, we
iterate the following three steps.

1) Inference step: we first infer the latent vector for each
observed image Ii by a K-step short-run MCMC, i.e.,
ẑ ∼ qθ(z

K |Ii), and then we obtain a population {ẑi} of
the inferred latent vectors for all observed data {Ii}, where
{ẑi} ∼ qθ(zK);

2) Correction step: We use OT to move {ẑi} to the desired
prior distribution for closing the gap between them due to non-
convergent inference. The OT reshapes the biased population
to the prior distribution with a minimum moving cost. With the
more correct inferred latent vectors, the subsequent parameter
update can be more accurate;

3) Learning step: Given the observed images and their corre-
sponding inferred latent vectors, we update θ by following

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

z

I

Long-Run
MCMC

p(z)

gθ(z)

z

I

ẑ

Short-Run
MCMC

Optimal

gθ(z)

p(z)

qθ(z
K)

Transport

Fig. 1. Diagrams of two learning strategies for latent variable models: (left)
the long-run MCMC inference framework. (right) the proposed framework
using a short-run MCMC with OT correction.

Eq. (5) and Eq. (6). As the θ becomes increasingly well-
trained, the inference engine qθ(zK) becomes more accurate
and the correction made by OT also becomes smaller.

An illustration of the proposed strategy is presented in Fig. 1,
where we also compare our framework with the one using a
traditional long-run MCMC inference.

In practise, we can use either the noise-initialized short-run
MCMC or the persistent short-run MCMC in the inference step. In
our experiment we choose the latter one for the purpose of quick
convergence. As to the correction stage, we learn the one-to-one
OT map from {ẑi} to {zi}, which is a population sampled from the
prior Gaussian distribution and of the same size as {ẑi}. Computing
the optimal transport at each iteration is time-consuming and
unnecessary in practise. To make the whole pipeline more efficient,
we actually perform the correction step after every L iterations.
After we get the bijective OT map T (ẑi) = zj , instead of directly
updating the model through the paired data {(T (ẑi), Ii)}, we
choose to correct ẑi by using a mixture of the OT result and the old

Algorithm 1 Short-run MCMC inference with OT correction
1: Input:

(1) observed examples {Ii},
(2) number of skip steps L,
(3) number of Langevin steps K ,
(4) Langevin step size s,
(5) random samples {zj} from the prior distribution N (0, Id),
(6) hyperparameter α.

2: Output: Model parameters θ.
3: k ← 1
4: repeat
5: # Inference
6: Infer the latent vectors {ẑi} from {Ii} by a K-step short-

run Langevin dynamics in Eq. (9). The short-run MCMC
can be initialized by random noise or the previous result.

7: # Correction
8: if k%L == 0 then
9: Compute the approximate OT map T̂ from {ẑi} to {zj}

according to Alg. 2.
10: ẑi ← αT̂ (ẑi) + (1− α)ẑi
11: end if
12: # Learning
13: Update the model parameter θ by following Eq. (5) and

Eq. (6) with the paired data {(ẑi, Ii)}.
14: k ← k + 1
15: until Converge

Algorithm 2 Optimal Transport
1: Input: source samples {ẑi}ni=1, target samples {zj}nj=1, and

a threshold ε.
2: Output: T̂
3: Initialize h = (0, 0, . . . , 0).
4: repeat
5: Compute Jj for j = 1, 2, . . . , n

6: Compute ∂E
∂hj

=
#Jj
n −

1
n

7: Update h according to the Adam algorithm with β1 = 0.9
and β2 = 0.5.

8: until ‖∇E‖ ≤ ε
9: Build the approximate OT map T̂ through Jj , j = 1, 2, . . . , n.

one to avoid unstable learning due to a sudden change of ẑi, i.e.,

ẑi ← αT (ẑi) + (1− α)ẑi, (12)

where α ∈ [0, 1] is a hyperparameter that controls the percentage of
the OT result used for correction. Then we get the corrected paired
data {(ẑi, Ii)}, which are used to update the model parameter θ.
Note that when α = 0, our model degenerates to the traditional
ABP model [11]. If α is set to be 1, we correct the short-run
outputs totally with the OT results. A moderate 0 < α < 1 is
typically helpful to gradually pull the marginal distribution qθ(zK)
to the prior distribution p(z) for ensuring a smooth correction. We
summarize the whole pipeline of our learning strategy in Alg. 1.

5.2 Optimal transport
Given the latent codes sampled from qθ(z

K), namely {ẑi}ni=1, and
the randomly generated samples {zj}nj=1 from the prior N (0, Id),
the one-to-one map from {ẑi} to {zj} is computed through the
optimal transport. Specifically, we set the cost function to be the
squared Euclidean distance cij = ‖ẑi − zj‖22 because it has a
beautiful geometric meaning [58], and then solve the following
assignment problem:

min
π∈Π

n∑
i,j=1

πijcij (13)

where Π = {π|
∑n
j=1 πij = 1

n ,
∑n
i=1 πij = 1

n , πij ≥ 0}.
According to the linear programming theory, there will be only
one nonzero element in each row/column of π. Actually, all of
the nonzero elements should be equal to 1/n. Thus, we can
define the map from {ẑi} to {zj} like this: T : ẑi → zj if
πij 6= 0. When n is large, directly solving the above problem with
Linear Programming will be problematic, since the computational
complexity is prohibitively high (O(n2.5) according to [69]).
Similarly, the classical Hungarian algorithm [70] for the assignment
problem cannot be used to solve this problem due to the high
computational complexity O(n3). It is also impossible to solve the
above problem with the approximate OT solvers, e.g., the Sinkhorn
algorithm [62], since these solvers tend to give a dense transport
plan, from which it is impossible to recover the OT map. Moreover,
the approximate algorithms are not suitable for large scale problems
with n > 20, 000. Thus, we turn to the dual problem of Eq. (13).
Here we extend the original dual formula for the semi-discrete OT
in [55], [61], [71] to the following minimization problem in our
discrete setting:

min
h
E(h) =

1

n

n∑
j=1

max
j
{〈ẑi, zj〉+ hj} −

1

n

n∑
j=1

hj . (14)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

The above problem is convex as it is the maximum of the
summation of n hyperplanes. Thus, it can be solved by the gradient
descent algorithm. The gradient is computed by ∂E

∂hj
=

#Jj
n −

1
n ,

where Jj = {i|〈ẑi, zj〉 + hj ≥ 〈ẑi, zk〉 + hk ∀ k ∈ [n]}
and #Jj is the number of elements in Jj . Assume h∗ is an
optimal solution of E(h), then h = h∗ + (c, c, . . . , c)T is
also an optimal solution. To omit the ambulation, we define
∇E(h) = ∇E(h) − mean(∇E(h)). With the gradient infor-
mation, the energy E(h) can be minimized by the Adam gradient
descent algorithm [72].

Since Eq. (14) is the dual of the assignment problem, with the
optimal solution h∗, it is easy to reconstruct the one-to-one OT
map from {ẑi} to {zj} by T : ẑi → zj , j = arg maxk〈ẑi, zk〉+
h∗k ∀ k ∈ [n]. During the optimization process, we stop when the
norm of the gradient ∇E(h) is less than ε. Ideally, if ε = 0, the
map T will be injective and surjective, and each Jj only includes
one element, namely the corresponding i. In that case, the OT
map T is well defined. In reality, we usually set ε > 0, therefore
T will be neither injective nor surjective. In such a situation, for
some zjs, there may be one or more corresponding ẑis; and for
some other zjs, the corresponding ẑis may not exist. To omit the
ambiguity and reconstruct the one-to-one map, we need to handle
the set Jj that will be empty or include one or more elements. The
approximate OT map T̂ is thus given by: (i) if there is only one
element in Jj , namely i, then T̂ (ẑi) = zj ; (ii) when Jj includes
more than one elements, we randomly select i ∈ Jj and abandon
the others, then define T̂ (ẑi) = zj ; (iii) the abandoned ẑis and
the zjs corresponding to the empty Jjs are removed from the
domain and range of T̂ , respectively. In such a way, we build a
new injective and surjective map T̂ that approximates the OT map
T well.

Note that in our OT algorithm, the prior distribution is not
limited to the Gaussian distribution. We can actually choose any
prior distribution as long as it is easy to sample from. Additionally,
the computational complexity to solve the nonsmooth dual problem
in Eq. (14) is O(n2/

√
ε) [73]. Under the background of training

the complex neural networks with a large number of parameters,
the time used to optimize the OT problem is negligible. Finally,
the number of the removed samples from T̂ should not be larger
than nε. In our experiments, we usually set ε = 0.05. With such a
small ε, we can get a good approximation of the OT map.

6 LEARNING FROM INCOMPLETE DATA

A major advantage of a top-down generative model is to learn from
incomplete data, where each data example is partially observed.
(For example, some pixels of each training image are occluded
or unobserved.) Learning the top-down generative model from
incomplete data can be considered a non-linear generalization of
matrix completion. In this section, we will show that, by making
a small modification, we can generalize the proposed MCMC-
OT inference algorithm above to the scenario of training models
from incomplete data. Recall that in the scenario of learning from
complete data or fully observed data, the learning objective, i.e.,
maximum likelihood in Eq. (2), is computed by summing over
all the pixels of the images, while in the setting of learning from
partially visible images, we will instead compute the likelihood by
summing over only the visible pixels of the images in the sense that
we estimate the model parameters by maximizing the likelihood of
the visible pixels.

Formally, suppose we observe a set of incomplete training
examples {(Ii,Mi), i = 1, ..., n}, where we use Mi to denote the
known positions of the missing information in each training exam-
ple Ii. Specifically, Mi is a matrix, whose number of dimension is
the same as that of the image Ii, with values ones indicating the
visible pixels and zeros indicating the invisible (missing, corrupted,
or unobserved) pixels of the image I, respectively. We learn the
model, i.e., parameters θ, from the incomplete data by maximizing

L(θ) =
1

n

n∑
i=1

log pθ(Ii|Mi). (15)

The joint distribution is now given by

log pθ(I, z|M) = − 1

2σ2
‖M � (I− gθ(z))‖2−

1

2
‖z‖2 + const,

(16)
where � is the element-wise multiplication operator. The joint
distribution presented in Eq. (16) is the key to compute

∇θ log pθ(I, z|M) =
1

σ2
(M � (I− gθ(z)))∇θgθ(z), (17)

which is the learning gradient to update the model parameter in the
scenario of learning from missing data, and

∇z log pθ(z|I,M) =
1

σ2
(M � (I−gθ(z)))∇zgθ(z)−z, (18)

which is derived from Eq. (16) and is the sampling gradient to infer
latent variables from the incomplete data by Langevin dynamics

z0 ∼ p0(z),

zk+1 = zk +
s2

2
∇z log pθ(z|I,M) + sξk, k = 1, ..,K.

(19)

The OT correction step is the same as the one in the original
algorithm since there is no missing information in the latent vectors
so that Alg.2 is still applicable. Each incomplete training example
is completed or recovered by first inferring the latent vector via
Eq. (18) and then transforming the inferred latent vector to data.
As to image recovery or inpainting in this scenario, we always fix
the visible part of the incomplete example and only update the
values in the invisible part. Since the model never sees the ground
truth intensities of the invisible pixels during training, this is a task
of unsupervised image inpainting. We can slightly modify Alg.1
to obtain a full description of the proposed learning algorithm for
incomplete data in Alg. 3. The ability to learn from incomplete data
can be considered as a criterion to evaluate a generative model.

7 EXPERIMENTS

In the experiments, we test the proposed model in terms of
whether it can (i) successfully correct the marginal distribution
qθ(z

K) of the latent vectors inferred by the short-run Langevin
dynamics, (ii) learn an expressive generator that synthesizes
visually realistic images from the prior distribution, (iii) perform
image inpainting with the learned generator, (iv) successfully
perform anomaly detection, and (v) perform unsupervised image
recovery by learning from the incomplete images. To show the
performance of our method, we experiment on MNIST [74],
SVHN [75] and CelebA [76] datasets. Moreover, to investigate the
influence of different hyperparameters, we mainly use the MNIST
dataset due to its simplicity and representativeness. To quantify the
performance of the model, we adopt the mean squared error (MSE)
and the FID score [77] to measure the quality of the reconstructed

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-5 0 5
-4

-2

0

2

4

(a) 1st OT (a) 2nd OT (a) 4th OT (a) 6th OT (a) 8th OT (a) Prior

Fig. 2. Visualization of the marginal distribution of the inferred latent codes qθ(zK) obtained by the short-run MCMC inference at different iterations,
as well as the prior distribution. The first row shows the results of the experiments using training images from the classes “0” and “1” of the MNIST
dataset with the latent dimension being 2. The second row shows the results of the experiments using training images from the classes “T-shirt”
and “Trouser” of the Fashion-MNIST dataset with the latent dimension being 3. We plot samples from qθ(z

K) at iterations where OT correction is
performed.

-5 0 5
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

(a) VAE [9] (b) ABP [11] (c) Ours

Fig. 3. Comparison of the marginal distributions of z inferred by different
models trained on images selected from classes “0” and “1” of MNIST
dataset (the first row) and classes “T-shirt” and “Trouser” of the Fashion-
MNIST dataset (the second row).

and generated images. The MSE loss is also used to evaluate the
performance of the model in the tasks of learning from incomplete
data for unsupervised image recovery.

7.1 Experimental Settings

Datasets In the experiments, we mainly use the MNIST datat-
set [74] (28 × 28 × 1), SVHN dataset [75] (32 × 32 × 3) and
CelebA dataset [76] (64× 64× 3). For the first two datasets, we
use all of the samples in the training set, namely 60,000 for the
MNIST dataset and 73,257 for the SVHN dataset. For the CelebA
dataset, we randomly select 60,000 images for the purpose of quick
convergence. For the task of learning from incomplete data, we
randomly pick 10,000 images to conduct the experiments. All of
the training images are resized and scaled to the range of [0, 1].

Model architectures The architectures of the models are
presented in Tab. 1, where the numbers of latent dimensions are set
to be 30, 64, 64 for the MNIST dataset, SVHN dataset and CelebA
dataset, respectively. We use the same architecture for the CelebA
dataset, in both tasks of learning generator from complete data and
learning from incomplete data for unsupervised image recovery.

Optimization The parameters for the generators are initialized
with Xavier normal [78] and then optimized with the Adam
optimizer [72] with β1 = 0.5 and β2 = 0.99. For all of the
experiments, we set the batch size to be 2,000. In Alg. 1 of the
paper, both L and K are set to be 50. The hyperparameter α is
set to be 0.5 for the MNIST dataset, and 0.3 for the SVHN and
CelebA datasets. The step sizes s for MNIST, SVHN and CelebA
datasets are set to be 0.3, 3.0, 3.0, respectively. We also set σ = 0.3
for all of the models.

Algorithm 3 Short-run MCMC inference with OT correction for
learning from incomplete data

1: Input: (1) observed incomplete images and positions of
missing pixels {Ii,Mi}, (2) number of skip steps L, (3)
number of Langevin steps K, (4) Langevin step size s, (5)
random samples {zj} from the prior distribution N (0, Id),
and (6) hyperparameter α.

2: Output: Model parameters θ.
3: k ← 1
4: repeat
5: # Inference from incomplete data
6: Infer the latent vectors {ẑi} from {Ii,Mi} by a K-step

short-run Langevin dynamics in Eq. (19). The short-run
MCMC can be initialized by random noise or the previous
result.

7: # Correction via optimal transport
8: if k%L == 0 then
9: Compute the approximate OT map T̂ from {ẑi} to {zj}

according to Alg. 2.
10: ẑi ← αT̂ (ẑi) + (1− α)ẑi
11: end if
12: # Learning from incomplete data
13: Update the model parameter θ with the gradient computed

by Eq. (17) with the triplet {(ẑi, Ii,Mi)}.
14: k ← k + 1
15: until Converge

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 1
The architectures of the generators for different datasets.

Model Layer Output Stride Padding BN

MNIST

Input z 30 - - -
Linear, ReLU 1024 - - Yes
Linear, ReLU 7×7×128 - - Yes

2× 2 convT, ReLU 14×14×64 2 - Yes
2× 2 convT, Tanh 28×28×1 2 - No

SVHN

Input z 64 - - -
Linear, ReLU 2×2×512 - - Yes

5× 5 convT, ReLU 4×4×256 2 2 Yes
5× 5 convT, ReLU 8×8×128 2 2 Yes
5× 5 convT, ReLU 16×16×64 2 2 Yes
5× 5 convT, Tanh 32×32×3 2 2 No

CelebA

Input z 64 - - -
Linear, ReLU 4×4×1024 - - Yes

5× 5 convT, ReLU 8×8×512 2 2 Yes
5× 5 convT, ReLU 16×16×256 2 2 Yes
5× 5 convT, ReLU 32×32×128 2 2 Yes
5× 5 convT, Tanh 64×64×3 2 2 No

7.2 Latent space analysis
We first conduct experiments to verify that the proposed method
does correct the bias of the marginal distribution of the latent
variables qθ(zK) obtained by the short-run MCMC inference. For
simplicity, we select two classes of images, i.e.,“0” and “1”, from
the MNIST dataset, and train our model on these images without
using label information. We set the number of dimension of the
latent space to be 2 for better visualization. We first show the
evolution of qθ(zK) by plotting the samples of qθ(zK) at different
learning iterations of our model in the first row of Fig. 2. Since we
perform OT correction every L = 50 learning iterations, we plot
samples of qθ(zK) at some selected iterations where OT correction
is performed in Fig. 2. We can see that qθ(zK) gradually moves
toward the prior distribution due to the OT correction, and finally
matches it. The first row of Fig. 3 shows a comparison of the latent
vectors inferred by the VAE model [9], the ABP model [11] and
our model, respectively. The distributions of latent vectors inferred
by the VAE and the ABP models are far from the prior distribution
(i.e., a Gaussian distribution), while the marginal distribution of
the inferred latent variables qθ(zK) of our model looks much
closer to the prior distribution. We conduct one more experiment
on images of the classes “T-shirt” and “Trouser” of the Fashion-
MNIST dataset. We learn our model with a 3-dimensional latent
space. The second row of Fig. 2 displays the evolution of qθ(zK)
using our method. The second row of Fig.3 shows a comparison
of the VAE, the ABP and our model. We have the same finding as
the one we get in the MNIST dataset using a 2-dimensional latent
space.

7.3 Image generation and reconstruction
A well-trained top-down generative models can perform data
generation via ancestral sampling and data reconstruction via
inference of latent variables. A correct or unbiased inference step is
crucial in learning a top-down generative model that can synthesize
realistic data. More specifically, the update of the generator
network highly relies on the inferred latent variables. Therefore,
if the marginal distribution of the inferred latent variables qθ(zK)
matches the prior distribution very well, then the generator network
can be trained as a probability transformation from the prior

Gaussian distribution to the data distribution. In this way, we can
easily synthesize a high quality image by I = gθ(z) with a latent
vector z sampled from the prior Gaussian distribution. Updating
the generator with biased inferred latent vectors will result in a
disconnection between prior distribution and data distribution.

We test our method on the tasks of image synthesis and image
reconstruction, and evaluate the performance in terms of the quality
of both the generated and reconstructed images. In the following,
we compare our model with some likelihood-based top-down
generative models, including (i) variational inference models, such
as VAE [9] and its variants 2sVAE [79], RAE [80] and Ladder-
VAE [81], (ii) flow-based models, such as Real NVP [82] and
GLOW [83], and (iii) other top-down generative models using
MCMC-based inference, including the ABP model [11], SRI
model [12], whose generator has multiple layers of latent variables,
and LEBM model [24], which uses an energy-based model [1],
instead of a simple Gaussian distribution, to be an informative prior
distribution.

In Fig. 4, we show both the reconstructed images and the
generated images with the latent vectors sampled from the given
prior distribution. It is obvious that the generated images shown
in the second column are realistic and comparable to the real
ones in the training datasets. In Table 2, we use the mean squared

reconstruction synthesis

Fig. 4. The reconstructed images (the first column) and the generated
images (the second column) of datasets MNIST [74] with a resolution
of 28× 28 pixels (the first row), SVHN [75] with a resolution of 32× 32
pixels (the second row), and CelebA [76] with a resolution of 64 × 64
pixels (the third row).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 2
The comparison results on different datasets. The MSE and FID (smaller is better) are used to test the quality of the reconstructed and generated

images, respectively.

Models
Variational Inference Normalizing Flow Short Run MCMC

VAE 2sVAE RAE Ladder-VAE RealNVP GLOW ABP SRI SRI (L=5) LEBM Ours
[9] [79] [80] [81] [82] [83] [11] [12] [12] [24]

MNIST MSE 0.023 0.026 0.015 0.018 - - - 0.019 0.015 - 0.0008
FID 19.21 18.81 23.92 - - 66.04 39.12 - - - 14.28

SVHN MSE 0.019 0.019 0.014 0.014 - - - 0.018 0.011 0.008 0.002
FID 46.78 42.81 40.02 39.26 103.8 65.27 49.71 44.86 35.23 29.44 19.48

CelebA MSE 0.021 0.021 0.018 0.028 - - - 0.020 0.015 0.013 0.010
FID 65.75 49.70 40.95 53.40 58.6 39.84 51.50 61.03 47.95 37.87 29.75

TABLE 3
AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset. Numbers are taken from [24] and results for our model

are averaged over 10 experiments for variance.

Heldout Digit 1 4 5 7 9

VAE [9] 0.063 0.337 0.325 0.148 0.104
MEG [84] 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.290 ± 0.040 0.342 ± 0.034

Bigan-σ [85] 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028
EnGAN [86] 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.29 ± 0.040 0.342 ± 0.034

EBM-VAE [87] 0.297 ± 0.033 0.723 ± 0.042 0.676 ± 0.041 0.490 ± 0.041 0.383 ± 0.025
LEBM [24] 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010
ABP [11] 0.095 ± 0.028 0.138 ± 0.037 0.147 ±0.026 0.138 ± 0.021 0.102 ±0.033

Ours (α = 0.1) 0.321 ± 0.024 0.621 ± 0.028 0.686 ± 0.024 0.622 ± 0.059 0.524 ± 0.041
Ours (α = 0.3) 0.353 ± 0.021 0.770 ± 0.024 0.726 ± 0.030 0.550 ± 0.013 0.555 ± 0.023
Ours (α = 0.5) 0.297 ± 0.012 0.695 ± 0.036 0.665 ± 0.029 0.580 ± 0.037 0.497 ± 0.025

error (MSE) to measure the quality of the reconstruction and the
Fréchet inception distance (FID) [77] to quantify the quality the
generated images. From the table we can find that the proposed
method outperforms the other baseline methods in the tasks of
reconstruction and generation, which verifies the effect of the OT
correction in learning generative models with short-run MCMC
inference.

We also display synthesized images generated by the models
SRI [12] and LEBM [24] in Fig.5 for qualitative comparison. The
SRI and LEBM are closely related to our model because both of
them are based on MLE with short-run MCMC inference. We can
see that our method generates much sharper and clearer images
than they do.

Due to the involvement of the short-run MCMC and the optimal
transport, it is necessary to consider the running time of the whole
pipeline. Here we take the SVHN dataset which includes 73,257
images with the size 32 × 32 × 3 as an example. We train our
model with two NVIDIA TitanX GPUs. For each iteration in Alg.
1, the inference step with K = 30 Langevin steps takes about 124
minutes, the correction step by optimal transport takes about 10
minutes and the learning step takes 5 minutes. Generally, we need
to run 10 ∼ 15 epochs for the model, which will consume about
one day.

7.4 Image inpainting
Once the latent variable model is trained from the fully observed
images, it can be applied to the task of image inpainting, in which
some missing pixels or an occluded region of an unobserved image
needs to be restored. Our model can restore the occluded region
by first inferring the latent variables of the incomplete image and
then generating a complete image from the inferred latent variables.
No OT correction is needed after the model is trained, therefore,

Fig. 5. The generated images of methods SRI [12] (the first column) and
LEBM [24] (the second column). The first row shows the synthesized
images generated by the models that learn from the SVHN dataset [75]
with a resolution of 32× 32 pixels, and the second row shows the results
generated by the models that learn from the CelebA dataset [76] with a
resolution of 64× 64 pixels.

the inference for inpainting purpose is directly performed via the
short-run Langevin dynamics. Different from the MCMC inference
performed on a complete image, where the gradient in the Langevin
step is computed by summing over all pixels of the image, the
inference performed on an occluded image computes the Langevin
gradient by summing over only the visible pixels of the image.

We demonstrate the effectiveness of our model for image
inpainting on the CelebA dataset, where images are occluded
by different kinds of masks with random locations, including two-
region mask with two randomly placed 16 × 16 patches, single
region mask with a size of 32 × 32 pixels, single region mask
with a size of 45× 45 pixels, and three types of salt-and-pepper
masks that cover 50%, 70% and 90%, respectively, of pixels of
an image by randomly placed 3× 3 patches. Fig. 6 displays some

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

qualitative results obtained by our model trained in section 7.3 for
image generation. The inference step used in inpainting follows
the same number of Langevin steps and the same step size as those
used in the training stage. In each panel, the first row shows the
original images, the second and the third rows show the occluded
images and the corresponding restored images. In Fig. 7, we show
that the inpainting algorithm can restore the occluded region of
an image with diverse and reasonable patterns, which means that
the learned model can capture a meaningful latent space of the
data and the short-run MCMC inference step can traverse between
different modes in the learned latent space.

7.5 Anomaly detection
Anomaly detection is another task that can help evaluate the
proposed model. With a well-learned model from the normal data,
we can detect the anomalous data by firstly sampling the latent code
z of the given testing image I from the conditional distribution
qθ(z

K |I) by the short-run Langevin dynamics, and then computing
the logarithm of the joint probability log pθ(I, z) in Eq. (7). Based
on our theory, the joint probability should be high for the normal
images and low for the anomalous ones.

In the following experiments, we treat each class in the MNIST
dataset as an anomalous class and leave the others as normal. We
follow the protocols as in [12], [84], [85] and train the model
only with the normal data. Then the model is tested with both the
normal and anomalous data. To evaluate the performance, we use
log pθ(I, z) as our decision function to compute the area under
the precision-recall curve (AUPRC), just like [24] does. In the
test stage, we run each experiment 10 times to get the mean and
variance. In Table 3, we compare our method with the related
models in this task, including the VAE [9], MEG [84], BiGAN-
σ [85], EnGAN [86], EBM-VAE [87], LEBM [24] and ABP
model [11], which can be treated as a special case of our model
without the OT calibration. Besides, we also report the results of
our model with different parameter α in Eq. (12). From the table,
we can find that the proposed method can get much better results
than those of other methods.

7.6 Influence of the number of latent dimensions
Here we show the influence of the number of dimensions of the
latent space under the same architecture. We use the SVHN dataset,
and set different numbers of dimensions of the latent space, e.g.,
20, 40 and 64, respectively. As shown in Table 4, with more latent
dimensions, we can obtain much better results in terms of both
reconstruction and generation.

TABLE 4
The performances of the proposed method on SVHN dataset with the

same architecture but different numbers of latent dimensions. (Smaller is
better for MSE and FID.)

Dimension MSE FID

20 0.011 36.32
40 0.008 24.73
64 0.002 19.48

7.7 Ablation study
Now we explore the performances of the proposed model under
different values of the parameter α introduced in Eq. (12), different

step sizes of the Langevin dynamics (the s of Eq. (9)), different
numbers of Langevin steps (K in Eq. (9)) and different numbers
of iterations for the learning step that seeks to maximize the joint
probability in Eq. (7) using the paired data {(ẑi, Ii)}.

The influence of α. Firstly, we investigate the influence of α
in Eq. (12), which is shown in Fig. 8. In the left subfigure, we
show the OT cost from {ẑi} to {zj}, which serves as a distance
between the qθ(zK) through the short-run Langevin dynamics and
the prior distribution p(z). It is obvious that a larger α can pull
the marginal distribution qθ(zK) more quickly toward the prior
distribution. The subfigure in the middle suggests that to get a
smaller MSE loss, it is better to choose a smaller α. According to
the right subfigure, we get the best FID with a medium α, namely
α = 0.5. Thus, to balance the OT cost, MSE loss and the FID, we
set α = 0.5 in the following experiments. From the curves, we
also find that as the algorithm progresses, the marginal distribution
qθ(z

K) gets increasingly close to the prior distribution p0(z), and
the qualities of both the reconstructed images and the generated
images also increase.

TABLE 5
The influence of the step size of the Langevin dynamics.

s=3e-3 s=1.5e-2 s=3e-2 s=6e-2

MSE Before 0.007 0.008 0.011 0.027
After 0.018 0.013 0.013 0.027

FID Before 44.51 28.10 22.70 109.97
After 40.61 26.86 21.89 87.77

The influence of the Langevin step size. Next, we show the
performances of our model with different Langevin step sizes (s in
Eq. (9)) in Table 5, where “Before” means that we use the model
before the OT correction, and “After” means we use the trained
model after the OT correction. With a small s, the MSE loss is
indeed very small, but the FID is relatively large, meaning that
the quality of the generated images is not very good. When s is
large, e.g., s = 6e−2 in the last column, both the MSE loss and the
FID are large, which means that we cannot even get high quality
reconstructed images. In this situation, the model actually doesn’t
converge very well. Only with the appropriate Langevin step size
(in this experiment, s = 3e−2), we can obtain a good balance
between the MSE and the FID for satisfying reconstruction and
generation results.

The influence of the number of Langevin steps. The number
of Langevin steps K in Eq. (9) is another key factor that influences
the performance of the proposed method. Theoretically, larger K
will give us a more convergent MCMC inference, so as to help
us get more accurate latent variables. To prove this point, we set
K = 30, 50, 100 respectively, and keep the other parameters fixed.
The results are shown in Table 6. Indeed, a larger K gives us a
better result. However, a large K will also increase the running
time for the whole pipeline linearly. Thus, to get a good balance
between the running time and the performance, we need to choose
the suitable K for different datasets.

The influence of the number of iterations inside the
learning step. In Alg. 1, we actually run several iterations, denoted
by L2, of gradient ascent inside the learning step to maximize the
joint probability in Eq. (7) by the paired data {(ẑi, Ii)}. The results
are shown in Table 7. From the table we can find that by increasing
L2, we can get much better performances for image reconstruction
and generation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

In
pu

t
O

cc
lu

de
d

O
ur

s

(a) mask: two 16× 16 (b) mask: 32× 32 (c) mask: 45× 45

In
pu

t
O

cc
lu

de
d

O
ur

s

(d) 50% (e) 70% (f) 90%

Fig. 6. The qualitative results of image inpainting for different types and levels of occlusions. In each panel, the first row shows the original images, and
the second row shows the corresponding occluded images with different sizes or percentages of masks, and the third row shows the reconstructed
images by our method. The mask sizes in panels (a)(b)(c) are 16×16, 32×32, and 45×45, respectively. The occlusion percentages of salt-and-pepper
masks in panels (d)(e)(f) are 50%, 70%, and 90%, respectively.

Fig. 7. Diverse inpainting results of the same masked input image. Each row shows one example, where the first column shows the original image,
the second column shows the masked images that need to be recovered, and the rest columns show the different inpainting results of the same
masked input image in the second column. The mask size is 45× 45, and the image size is 64× 64.

TABLE 6
The influence of the number of Langevin steps K.

K=30 K=50 K=100

MSE 0.014 0.011 0.007
FID 22.32 18.57 15.43

TABLE 7
The influence of the number of learning iterations.

L2=1 L2=2 L2=3

MSE 0.013 0.010 0.008
FID 21.89 17.32 14.28

7.8 Learning from incomplete data
In Section 7.4, we have shown that the model trained on fully
observed images can perform image inpainting in testing stage.

This is a supervised setting of image inpainting because complete
data are provided in the training stage. As to an unsupervised
setting, only incomplete training images are provided to learn how
to restore occluded images, which is more challenging than the
supervised setting.

We have shown that in Section 6 our top-down generative model
with a short-run MCMC inference can learn from incomplete data,
e.g., images with occluded pixels. To demonstrate this ability, we
experiment on the occluded images from the CelebA dataset [76],
in which images are occluded with different types of masks. To
construct the dataset, we randomly select 10,000 images from the
CelebA dataset, and then randomly place an occluding mask to each
image. Similar to [11], we use two types of masks: single region
mask and salt and pepper mask. We use different sizes of single
regions, e.g., 15×15, 20×20, 25×25, 30×30, 35×35, 40×40,
and 45×45, and different occlusion percentages of salt-and-pepper
masks, e.g., 50%, 60%, 70%, 75%, 80%, 85%, and 90%. We
compare our method with two related baselines, the VAE method

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0 5 10 15 20

Epochs

2

3

4

5

O
T

 C
o

s
t

OT Cost =0.3

=0.5

=1.0

0 5 10 15 20

Epochs

0

0.02

0.04

0.06

0.08

0.1

M
S

E

MSE Loss
=0.3

=0.5

=1.0

0 5 10 15 20

Epochs

0

100

200

300

F
ID

FID
=0.3

=0.5

=1.0

14 16 18 20
22

24

26

28

Fig. 8. The influences of α on the OT cost, MSE loss and FID over different epochs for the MNIST dataset [74].

(i.e., the generative model with variational inference) [9] and the
ABP method (i.e., the generative model with an MCMC inference
without using OT correction) [11], in the task of unsupervised
image inpainting. We adapt the original VAE and ABP algorithms
to this task by modifying their loss terms so that they are only
computed on the unoccluded pixels.

Fig. 9 shows a comparison of qualitative results, where the
first row shows original images that are unknown in the training
algorithm, the second row shows the corresponding occluded
training images. The third, fourth, and fifth rows show the
corresponding recovered images obtained by the VAE [9], the ABP
[11], and our recovering algorithm presented in Alg. 3, respectively.
Moreover, we measure the performance of the proposed method and
the baselines by using the recovery errors calculated by the average
per pixel difference between the original image and the recovered
image on the occluded pixels. Table 8 presents a comparison
among them in the tasks of image recovery, with different types
and different levels of occlusions. For all the methods, the recovery
error increases as the occlusion level (i.e., mask size or occlusion
percentage) increases. Our method outperforms the baselines in all
settings in terms of recovery error. Besides, in Fig. 10 we show
the evolution of the MSE loss and the OT cost over epochs for
the recovery task, where the images are occluded by one single
20× 20 mask. From the figure we can see that both the MSE loss
and the OT cost decrease consistently as the recovery algorithm
proceeds.

8 CONCLUSION

Learning generative models is a fundamental problem in computer
vision and machine learning. In this paper, we put emphasis on
learning top-down generative models by maximum likelihood
estimation, in which the inference is accomplished by an efficient
but biased short-run MCMC, such as Langevin dynamics. We
propose to use the optimal transport (OT) theory to correct the bias
of the short-run MCMC-based inference in training the deep top-
down generative models. Specifically, in each iteration, we correct
the bias of the marginal distribution of the latent variables inferred
by the short-run Langevin dynamics through the OT map between
this distribution and the prior distribution. We explicitly transport
the biased inferred vectors to the prior distribution to enforce the
aggregated inference distribution to be the prior distribution. In
such a way, the distribution of the inferred latent vector will finally
converge to the prior distribution, thus improving the accuracy of
the subsequent model parameter learning. Experimental results
show that the proposed training method performs better than
the models using MCMC inference without OT correction and
the models using variational inference on the tasks like image

reconstruction, image generation, supervised image inpainting,
anomaly detection, and unsupervised image recovery.

REFERENCES

[1] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu, “A theory of generative convnet,”
in International Conference on Machine Learning (ICML), 2016.

[2] S. C. Zhu, Y. N. Wu, and D. Mumford, “Minimax entropy principle and
its application to texture modeling,” Neural Computation, vol. 9, no. 8,
pp. 1627–1660, 1997.

[3] J. S. Liu, Monte Carlo Strategies in Scientific Computing. Springer
Science & Business Media, 2008.

[4] A. Barbu and S.-C. Zhu, Monte Carlo Methods. Springer, 2020.
[5] S.-C. Zhu, “Statistical modeling and conceptualization of visual patterns,”

IEEE transactions on pattern analysis and machine intelligence, vol. 25,
no. 6, pp. 691–712, 2003.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (NIPS), 2014, pp.
2672–2680.

[7] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
International Conference on Learning Representations (ICLR), 2016.

[8] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in International Conference on Machine Learning
(ICML), 2017, pp. 214–223.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations (ICLR), 2013.

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models,” in International
Conference on Machine Learning (ICML), vol. 32, 2014, pp. 1278–1286.

[11] T. Han, Y. Lu, S.-C. Zhu, and Y. N. Wu, “Alternating back-propagation
for generator network,” in The AAAI Conference on Artificial Intelligence
(AAAI), 2017, pp. 1976–1984.

[12] E. Nijkamp, B. Pang, T. Han, L. Zhou, S.-C. Zhu, and Y. N. Wu, “Learning
multi-layer latent variable model via variational optimization of short run
MCMC for approximate inference,” in European Conference on Computer
Vision (ECCV), 2020, pp. 361–378.

[13] H. Ledig, L. Theis, F. Huszan, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single
image super-resolution using a generative adversarial network,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 105–114.

[14] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative image
inpainting with contextual attention,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 5505–5514.

[15] Y.-J. Li, Y.-C. Chen, Y.-Y. Lin, X. Du, and Y.-C. F. Wang, “Recover
and identify: A generative dual model for cross-resolution person re-
identification,” in International Conference on Computer Vision (ICCV),
2019, pp. 8089–8098.

[16] C. Zheng, T. Cham, and J. Cai, “Pluralistic image completion,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 1438–1447.

[17] J. Gu, Y. Shen, and B. Zhou, “Image processing using multi-code GAN
prior,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 3009–3018.

[18] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and captions,”
in Advances in Neural Information Processing Systems (NIPS), 2016, pp.
2352–2360.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

In
pu

t
O

cc
lu

de
d

VA
E

[9
]

A
B

P
[1

1]
O

ur
s

(a) mask: 20× 20 (b) mask: 25× 25 (c) mask: 30× 30

In
pu

t
O

cc
lu

de
d

VA
E

[9
]

A
B

P
[1

1]
O

ur
s

(d) 50% (e) 70% (f) 90%

Fig. 9. A comparison of recovery results by different methods in unsupervised recovery tasks with different levels of occlusions. In each panel, the
first row shows some original images that are unobserved in all training algorithms, the second row shows the corresponding occluded images with
different sizes of masks or percentages of noises, and the third, fourth and fifth rows show the reconstructed images by the VAE model [9], the
ABP model [11] and our model, respectively. The mask sizes in panels (a)(b)(c) are 20 × 20, 25 × 25, and 30 × 30, respectively. The occlusion
percentages of salt-and-pepper masks in panels (d)(e)(f) are 50%, 70%, and 90%, respectively. The input images are of size 64× 64.

Fig. 10. The changes of the MSE loss and OT cost over epochs in the
unsupervised recovery task with a single 20× 20 block mask.

[19] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang, “Holo-
GAN: Unsupervised learning of 3D representations from natural images,”
in International Conference on Computer Vision (ICCV), 2019, pp. 7587–
7596.

[20] N. Skafte and S. r. Hauberg, “Explicit disentanglement of appearance and
perspective in generative models,” in Advances in Neural Information
Processing Systems (NeurIPS), 2019, pp. 1016–1026.

[21] T. Aumentado-Armstrong, S. Tsogkas, A. Jepson, and S. Dickinson,
“Geometric disentanglement for generative latent shape models,” in

International Conference on Computer Vision (ICCV), 2019, pp. 8180–
8189.

[22] S. N, B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli,
F. Wood, and P. Torr, “Learning disentangled representations with semi-
supervised deep generative models,” in Advances in Neural Information
Processing Systems (NIPS), 2017, pp. 5925–5935.

[23] S. Ren, D. Li, Z. Zhou, and P. Li, “Estimate the implicit likelihoods of
GANs with application to anomaly detection,” in Proceedings of The Web
Conference 2020 (WWW), 2020, pp. 2287–2297.

[24] B. Pang, T. Han, E. Nijkamp, S.-C. Zhu, and Y. N. Wu, “Learning latent
space energy-based prior model,” in Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[25] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal, “A generative
adversarial approach for zero-shot learning from noisy texts,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 1004–1013.

[26] Y. Zhu, J. Xie, B. Liu, and A. Elgammal, “Learning feature-to-feature
translator by alternating back-propagation for generative zero-shot learn-
ing,” in International Conference on Computer Vision (ICCV), 2019, pp.
9843–9853.

[27] J. Zhang, J. Xie, and N. Barnes, “Learning noise-aware encoder-decoder
from noisy labels by alternating back-propagation for saliency detection,”
in European Conference on Computer Vision (ECCV), 2020, pp. 349–366.

[28] J. Zhang, D. Fan, Y. Dai, S. Anwar, F. S. Saleh, T. Zhang, and N. Barnes,
“Uc-net: Uncertainty inspired RGB-D saliency detection via conditional
variational autoencoders,” in IEEE Conference on Computer Vision and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

TABLE 8
A comparison of performance among the VAE model [9], the ABP model [11] and our model for unsupervised image recovery, with different types

and percentages of occlusions.

single region mask
Mask size 15× 15 20× 20 25× 25 30× 30 35× 35 40× 40 45× 45
VAE [9] 0.0020 0.0024 0.0035 0.0054 0.0197 0.0204 0.0409

ABP [11] 0.0016 0.0020 0.0025 0.0032 0.0054 0.00107 0.0196
Ours 0.0016 0.0019 0.0024 0.0029 0.0048 0.0096 0.0164

Salt-and-pepper mask
Occlusion percentage 50% 60% 70% 75% 80% 85% 90%

VAE [9] 0.0027 0.0027 0.0035 0.0036 0.0037 0.0038 0.0049
ABP [11] 0.0022 0.0025 0.0026 0.0030 0.0030 0.0032 0.0035

Ours 0.0021 0.0024 0.0026 0.0029 0.0030 0.0031 0.0034

Pattern Recognition (CVPR), 2020, pp. 8579–8588.
[29] S. Tulyakov, M. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing

motion and content for video generation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1526–1535.

[30] J. Xie, R. Gao, Z. Zheng, S.-C. Zhu, and Y. N. Wu, “Learning dynamic
generator model by alternating back-propagation through time,” in The
AAAI Conference on Artificial Intelligence (AAAI), vol. 33, 2019, pp.
5498–5507.

[31] ——, “Motion-based generator model: Unsupervised disentanglement
of appearance, trackable and intrackable motions in dynamic patterns,”
in The AAAI Conference on Artificial Intelligence (AAAI), 2020, pp.
12 442–12 451.

[32] Y. Zhu, M. R. Min, A. Kadav, and H. P. Graf, “S3VAE: self-supervised
sequential VAE for representation disentanglement and data generation,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 6537–6546.

[33] P. Langevin, “On the theory of brownian motion,” Journal of Statistical
Physics, 1908.

[34] R. M. Neal, “MCMC using Hamiltonian dynamics,” Handbook of Markov
Chain Monte Carlo, vol. 2, no. 11, p. 2, 2011.

[35] C. Villani, Optimal Transport: Old and New. Springer Science &
Business Media, 2008, vol. 338.

[36] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-
fidelity images with VQ-VAE-2,” in Advances in Neural Information
Processing Systems (NeurIPS), 2019, pp. 14 837–14 847.

[37] A. Vahdat and J. Kautz, “NVAE: A deep hierarchical variational
autoencoder,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[38] J. He, A. M. Lehrmann, J. Marino, G. Mori, and L. Sigal, “Probabilistic
video generation using holistic attribute control,” in European Conference
on Computer Vision (ECCV), vol. 11209, 2018, pp. 466–483.

[39] G. Yang, X. Huang, Z. Hao, M. Liu, S. J. Belongie, and B. Hariharan,
“Pointflow: 3d point cloud generation with continuous normalizing flows,”
in International Conference on Computer Vision (ICCV), 2019, pp. 4540–
4549.

[40] J. Aneja, H. Agrawal, D. Batra, and A. G. Schwing, “Sequential latent
spaces for modeling the intention during diverse image captioning,” in
International Conference on Computer Vision (ICCV), 2019, pp. 4260–
4269.

[41] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual
learning,” in International Conference on Learning Representations
(ICLR), 2018.

[42] N. Loo, S. Swaroop, and R. E. Turner, “Generalized variational continual
learning,” in International Conference on Learning Representations
(ICLR), 2021.

[43] M. Rosca, B. Lakshminarayanan, and S. Mohamed, “Distribution match-
ing in variational inference,” arXiv preprint arXiv:1802.06847, 2018.

[44] M. D. Hoffman and M. J. Johnson, “ELBO surgery: yet another way to
carve up the variational evidence lower bound,” in Workshop in Advances
in Approximate Bayesian Inference, NIPS, vol. 1, no. 2, 2016.

[45] T. Han, Y. Lu, J. Wu, X. Xing, and Y. N. Wu, “Learning generator networks
for dynamic patterns,” in IEEE Winter Conference on Applications of
Computer Vision, WACV, 2019, pp. 809–818.

[46] T. Han, X. Xing, and Y. N. Wu, “Learning multi-view generator
network for shared representation,” in International Conference on Pattern
Recognition, ICPR, 2018, pp. 2062–2068.

[47] X. Xing, R. Gao, T. Han, S.-C. Zhu, and Y. N. Wu, “Deformable generator
networks: unsupervised disentanglement of appearance and geometry,”

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2020.

[48] E. Nijkamp, B. Pang, T. Han, S.-C. Zhu, and Y. N. Wu, “Learning
multi-layer latent variable model via variational optimization of short run
MCMC for approximate inference,” in European Conference on Computer
Vision (ECCV), 2020.

[49] G. Peyré and M. Cuturi, “Computational optimal transport,” Found. Trends
Mach. Learn., vol. 11, no. 5-6, pp. 355–607, 2019.

[50] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein GANs,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2017, pp. 5769–5779.

[51] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in International Conference on
Learning Representations (ICLR), 2018.

[52] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein
auto-encoders,” in International Conference on Learning Representations
(ICLR), 2018.

[53] A. Korotin, V. Egiazarian, A. Asadulaev, A. Safin, and E. Burnaev,
“Wasserstein-2 generative networks,” in International Conference on
Learning Representations (ICLR), 2021.

[54] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in
Proceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 70. PMLR, 2017,
pp. 146–155.

[55] D. An, Y. Guo, N. Lei, Z. Luo, S.-T. Yau, and X. Gu, “AE-OT: A new
generative model based on extended semi-discrete optimal transport,” in
International Conference on Learning Representations (ICLR), 2020.

[56] D. An, Y. Guo, M. Zhang, X. Qi, N. Lei, and X. Gu, “AE-OT-GAN:
Training GANs from data specific latent distribution,” in European
Conference on Computer Vision (ECCV), 2020, p. 548–564.

[57] Y. Brenier, “Polar factorization and monotone rearrangement of vector-
valued functions,” Comm. Pure Appl. Math., vol. 44, no. 4, pp. 375–417,
1991.

[58] C. Villani, Topics in Optimal Transportation. American Mathematical
Society, 2003, vol. 58.

[59] S. Endre, Lecture Notes on Finite Element Methods for Partial Differential
Equations. University of Oxford, 2020.

[60] J.-D. Benamou, B. D. Froese, and A. M. Oberman, “Numerical solution
of the optimal transportation problem using the monge-ampère equation,”
J. Comput. Phys, 2014.

[61] D. X. Gu, F. Luo, j. Sun, and S.-T. Yau, “Variational principles for
minkowski type problems, discrete optimal transport, and discrete monge-
ampère equations,” Asian Journal of Mathematics, vol. 20, no. 2, p.
383–398, 2016.

[62] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transportation distances,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2292–2300.

[63] P. Dvurechensky, A. Gasnikov, and A. Kroshnin, “Computational optimal
transport: Complexity by accelerated gradient descent is better than by
sinkhorn’s algorithm,” in Proceedings of the 35th International Conference
on Machine Learning. PMLR, 2018.

[64] M. Blondel, V. Seguy, and A. Rolet, “Smooth and sparse optimal
transport,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2018.

[65] S. D. Marino and A. Gerolin, “Optimal transport losses and
sinkhorn algorithm with general convex regularization,” arXiv preprint
arXiv:2007.00976, 2020.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[66] A. Genevay, M. Cuturi, G. Peyré, and F. Bach, “Stochastic optimization
for large-scale optimal transport,” in Advances in Neural Information
Processing Systems (NIPS), 2016, pp. 3440–3448.

[67] V. Seguy, B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and
M. Blondel, “Large-scale optimal transport and mapping estimation,”
in International Conference on Learning Representations (ICLR), 2018.

[68] S.-C. Zhu and D. Mumford, “Grade: Gibbs reaction and diffusion
equations,” in International Conference on Computer Vision (ICCV),
1998, pp. 847–856.

[69] Y. T. Lee and A. Sidford, “Path finding methods for linear programming:
Solving linear programs in Õ(sqrt(rank)) iterations and faster algorithms
for maximum flow,” in IEEE Symposium on Foundations of Computer
Science (FOCS), 2014, pp. 424–433.

[70] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, 1955.

[71] F. Aurenhammer, F. Hoffmann, and B. Aronov, “Minkowski-type theorems
and least-squares clustering,” Algorithmica, vol. 20, no. 1, pp. 61–76,
1998.

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2014.

[73] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathemat-
ical Programming, vol. 103, p. 127–152, 2005.

[74] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner., “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[75] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

[76] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “From facial expression
recognition to interpersonal relation prediction,” International Journal of
Computer Vision (IJCV), vol. 126, no. 5, pp. 550–569, 2018.

[77] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “GANs trained by a two time-scale update rule converge to
a nash equilibrium,” Advances in Neural Information Processing Systems
(NIPS), pp. 6626–6637, 2017.

[78] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010, pp. 249–256.

[79] B. Dai and D. Wipf, “Diagnosing and enhancing VAE models,” in
International Conference on Learning Representations (ICLR), 2019.

[80] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Scholkopf, “From
variational to deterministic autoencoders,” in International Conference on
Learning Representations (ICLR), 2020.

[81] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“Ladder variational autoencoders,” in Advances in Neural Information
Processing Systems (NIPS), vol. 29, 2016.

[82] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real
nvp,” in International Conference on Learning Representations (ICLR),
2016.

[83] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” in Advances in Neural Information Processing Systems
(NeurIPS), vol. 31, 2018.

[84] R. Kumar, A. Goyal, A. C. Courville, and Y. Bengio, “Maximum entropy
generators for energy-based models,” arXiv:1901.08508, 2019.

[85] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar,
“Efficient GAN-based anomaly detection,” arXiv: 1802.06222, 2018.

[86] R. Kumar, S. Ozair, A. Goyal, A. Courville, and Y. Bengio, “Max-
imum entropy generators for energy-based models,” arXiv preprint
arXiv:1901.08508, 2019.

[87] T. Han, E. Nijkamp, L. Zhou, B. Pang, S.-C. Zhu, and Y. N. Wu, “Joint
training of variational auto-encoder and latent energy-based model,” in
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2020.

Dongsheng An is currently a PhD candidate
at the Department of Computer Science, Stony
Brook University. Prior to that, he received his
M.S. and B.S. from Tsinghua University, China.
His main research interests include computa-
tional optimal transport, deep generative model-
ing and computational conformal/quasi-conformal
geometry.

Jianwen Xie received his Ph.D. degree in statis-
tics from University of California, Los Angeles
(UCLA) in 2016. He is currently a senior research
scientist at Baidu Research USA. Before join-
ing Baidu, he was a senior research scientist
at Hikvision Research Institute USA from 2017
to 2020, and a staff research associate and
postdoctoral researcher in the Center for Vision,
Cognition, Learning, and Autonomy (VCLA) at
UCLA from 2016 to 2017. His research interests
focus on generative modeling and learning with

applications in computer vision.

Ping Li received his Ph.D. in Statistics in 2007,
from Stanford University, where he also earned
a master’s degree in Computer Science and a
master’s degree in Eletrical Engineering. Prior to
Stanford, Ping Li gradated two master’s degrees
from the University of Washington (Seattle). Ping
Li was a recipient of the Young Instigator Award
from the Office of Naval Research (ONR-YIP)
and a recipient of the Young Investigator Award
from the Air Force Office of Scientific Research
(AFOSR-YIP).

