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Abstract

Tracking humans that are interacting with the other sub-
jects or environment remains unsolved in visual tracking,
because the visibility of the human of interests in videos is
unknown and might vary over time. In particular, it is still
difficult for state-of-the-art human trackers to recover com-
plete human trajectories in crowded scenes with frequent
human interactions. In this work, we consider the visibil-
ity status of a subject as a fluent variable, whose change is
mostly attributed to the subject’s interaction with the sur-
rounding, e.g., crossing behind another object, entering a
building, or getting into a vehicle, etc. We introduce a
Causal And-Or Graph (C-AOG) to represent the causal-
effect relations between an object’s visibility fluent and its
activities, and develop a probabilistic graph model to jointly
reason the visibility fluent change (e.g., from visible to in-
visible) and track humans in videos. We formulate this joint
task as an iterative search of a feasible causal graph struc-
ture that enables fast search algorithm, e.g., dynamic pro-
gramming method. We apply the proposed method on chal-
lenging video sequences to evaluate its capabilities of es-
timating visibility fluent changes of subjects and tracking
subjects of interests over time. Results with comparisons
demonstrate that our method outperforms the alternative
trackers and can recover complete trajectories of humans
in complicated scenarios with frequent human interactions.

1. Introduction
Tracking objects of interest in videos is a fundamental

computer vision problem that has great potentials in many

video-based applications, e.g., security surveillance, disas-
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Figure 1. Illustration of visibility fluent changes. There are three

states: visible, occluded, contained. When a person approaches a

vehicle, its state changes from “visible” to “occluded” to “con-

tained”, such as the person1 and person2 (a-e). When a vehicle

passes, the person4 is occluded. The state of person4 changes

from “visible” to “occluded” in (d-e). (f) shows the correspond-

ing top-view trajectories of different persons. The numbers are the

persons’ IDs. The arrows indicate the moving direction.

ter response, and border patrol. In these applications, a crit-

ical problem is how to obtain the complete trajectory of the

object of interest while observing it moving in the scene

through camera view. This is a challenging problem since

an object of interest might undergo frequent interactions

with the surrounding, e.g., entering a vehicle or a building,

or with the other objects, e.g., passing behind another sub-
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ject. With these interactions, the visibility status of a subject

will be varying over time, e.g., changing from “invisible” to

“visible” and vice versa. In the literature, most state-of-the-

art trackers utilize appearance or motion cues to localize

subjects in video sequences and are likely to fail to track

the subjects whose visibility status keep changing.

To deal with the above challenges, in this work, we

propose to explicitly reason subjects’ visibility status over

time, while tracking the subjects of interests in surveil-

lance videos. Traditional trackers are likely to fail when

the target become invisible due to occlusion, our proposed

method could jointly infer objects’ locations and visibility

fluent changes, thus helping to recover the complete trajec-

tories. The proposed techniques, with slight modifications,

can be generalized to other scenarios, e.g., hand-held cam-

eras, driverless vehicles, etc.

The key idea of our method is to introduce a fluent vari-

able for each subject of interest to explicitly indicate his/her

visibility status in videos. Fluent was firstly used by New-

ton to denote the time varying status of an object. It is

also used to represent the varying object status in com-

monsense reasoning [27]. In this paper, the visibility sta-

tus of objects can be described as fluents varying over time.

As illustrated in Fig. 1, the person3 and person5 are walk-

ing through the parking lot, while the person1 and person2
are entering a sedan. The visibility status of person1’s and

person2’s changes first from “visible” to “occluded”, and

then to “contained”. This group example demonstrates how

objects’ visibility fluents change over time along with their

interactions to the surrounding.

We introduce a graphical model, i.e. Causal And-Or

graph (C-AOG), to represent the causal relationships be-

tween object’s activities (actions/sub-events) and object’s

visibility fluent changes. The visibility status of an object

might be caused by multiple actions, and we need to reason

the actual causality from videos. These actions are alter-

native choices that lead to the same occlusion status, and

form the Or-nodes. Each leaf node indicates an action or

sub-event that can be described by And-nodes. Taking the

videos shown in Fig. 1 for instance, the status of “occluded”

can be caused by the following actions: (i) walking behind a

vehicle; (ii) walking behind a person; or (iii) inertial action

that maintains the fluent unchanged.

The basic hypothesis of this model is that, for a particular

scenario (e.g., parking-lot), there are only a limited number

of actions that can cause the fluent to change. Given a video

sequence, we need to create the optimal C-AOG and se-

lect the best choice for each Or-node in order to obtain the

optimal causal parse graph, which is shown as red lines in

Fig. 3(a).

We develop a probabilistic graph model to reason ob-

ject’s visibility fluent changes using C-AOG representation.

Our formula integrates object tracking purposes as well to

enable joint solution of tracking and fluent change reason-

ing, which are mutually beneficial. In particular, for each

subject of interest, our method uses two variables to repre-

sent (i) subjects’ positions in videos; and (ii) visibility status

as well as the best causal parse graph. We utilize a Markov

Chain Prior model to describe the transitions of these vari-

ables, i.e., the current state of a subject is only dependent

on the previous state. We then reformulate the problem into

an Integer Linear Programming model, and utilize dynamic

programming to search the optimal states over time.

In experimental evaluations, the proposed method is

tested on a set of challenging sequences that include fre-

quent human-vehicle or human-human intersections. Re-

sults show that our method can readily predict the correct

visibility status and recover the complete trajectories. In

contrast, most of the alternative trackers can only recover

part of the trajectories due to the occlusion or containment.

Contributions. There are three major contributions of

the proposed framework: (i) a Causal And-Or Graph (C-

AOG) model to represent object visibility fluents varying

over time; (ii) a joint probabilistic formulation for object

tracking and fluent reasoning; and (iii) a new occlusion rea-

soning dataset to cover objects with diverse fluent changes.

2. Related Work
The proposed research is closely related to the following

three research streams in computer vision and AI.

Multiple object tracking has been extensively studied

in the past decades. In the past literatures, tracking-by-

detection has become the mainstream framework [37, 7, 40,

41, 9, 8]. Specifically, a general detector [11, 30] is first

applied to generate detection proposals, and then data asso-

ciation techniques [4, 6, 42] are employed to link detection

proposals over time in order to get object trajectories. Our

approach also follows this pipeline, but is more focused on

the reasoning of object visibility status.

Tracking interacting objects studies a more specific

problem of tracking entangled objects. Some works [34,

35, 25] try to model the object appearing and disappearing

phenomena globally, yielding strong assumptions on ap-

pearance, location or motion cues. On the contrary, other

works attempt to model human-object and human-human

interactions under specific scenarios, such as social activ-

ities [5, 31], team sports [24], and people carrying lug-

gage [3]. In this paper, we propose a more principled way to

track objects with both short-term interactions, e.g., passing

behind another object, or long-term interactions, e.g., enter-

ing a vehicle and moving together.

Causal-effect reasoning is a popular topic in AI but has

not received much attentions in the field of computer vi-

sion. It studies, for instances, the difference between co-

occurrence and causality, and aims to learn causal knowl-

edge automatically from low-level observations, e.g., im-
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Figure 2. Illustration of a person’s actions and her visibility
fluent changes when she enters a vehicle.

ages or videos. There are two popular causality models:

Bayesian Network [16, 28] and grammar models [17, 23].

Grammar models [39, 10, 33] are powerful tool for model-

ing high-level human knowledge in specific domains. No-

tably, Fire and Zhu [13] have introduced a causal grammar

to infer causal-effect relationship between object’s status,

e.g., door open/close, and agent’s actions, e.g., pushing the

door. They studied this problem using manually designed

rules and video sequences in lab settings. In this work, we

extend the causal grammar models to infer objects’ visi-

bility fluent and ground the task on challenging videos in

surveillance systems.

3. Representation
In this paper, we define three states for visibility flu-

ent reasoning: visible, (partially/fully) occluded, and con-
tained. Most multiple object tracking methods are based on

tracking-by-detection framework, which obtain good per-

formance in visible and partially occluded situations. How-

ever, when full occlusions take place, these trackers usu-

ally regard the disappearing-and-reappearing objects as new

objects. Although objects in fully occluded and contained

states are invisible, there are still evidences to infer the lo-

cations of objects and fill-in the complete trajectory. We

can distinguish object being fully occluded and object be-

ing contained from three empirical observations.

Firstly, motion independence. In fully occluded state,

such as a person staying behind a pillar, the motion of the

person is independent of the pillar. While in contained state,

such as a person sitting in a vehicle, or a bag in the trunk, the

position and motion of the person/bag would be the same as

the vehicle. Therefore, the inference of the visibility fluent

of the object is important in tracking objects accurately in a

complex environment.

Secondly, coupling actions and object fluent changes.

For example, as illustrated in Fig. 2, if a person gets into a

vehicle, the related sequential atomic actions are: approach-

ing a vehicle, opening the vehicle door, getting into the ve-

hicle, and closing the vehicle door; the related object fluent

changes are vehicle door closed → open → closed. The flu-

ent change is a consequence of agent actions. If the fluent-

changing actions do not happen, the object should maintain

its current fluent. For example, a person that is contained

in a vehicle will remain contained unless he/she opens the

vehicle door and gets out of the vehicle.

Thirdly, visibility in the alternative camera views. In

full occlusion state, such as a person occluded by a pillar,

though the person could not be observed from the current

viewpoint, he/she could be seen from the other viewpoints;

while in contained state, such as a person in a vehicle, this

person could not be seen from any viewpoints.

In this work, we mainly study the interactions of humans

and the developed methods can also be expanded to other

objects, e.g., animals.

3.1. Causal And-Or Graph
In this paper, we propose a Causal And-Or Graph (C-

AOG) to represent the action-fluent relationship, as illus-

trated in Fig. 3(a). A C-AOG has two types of nodes: (i)

Or-nodes that represent the variations or choices, and (ii)

And-nodes that represent the decompositions of the top-

level entities. The arrows indicate the causal relations be-

tween actions and fluent transitions. For example, a C-AOG

can be used to expressively model a series of action-fluent

relations.

The C-AOG is capable of representing multiple alterna-

tives for causes of occlusion and potential transitions. There

are four levels in our C-AOG: visibility fluents, possible

states, state transitions and agent actions. Or nodes rep-

resent alternative causes in visibility fluents and state lev-

els; that is, one fluent can have multiple states and one state

can have multiple transitions. An event can be decomposed

into several atomic actions and represented by an And-node,

e.g., an event of a person getting into a vehicle is a com-

position of four atomic actions: approaching the vehicle,

opening the door, entering the vehicle, and closing the door.

Given a video sequence I with length T and camera cal-

ibration parameters H , we represent the scene R as

R = {Ot : t = 1, 2, ..., T} ,
Ot =

{
oit : i = 1, 2, ..., Nt

}
,

(1)

where Ot denotes all the objects at time t, and Nt is the size

of Ot, i.e., the number of objects at time t. Nt is unknown

and will be inferred from observations. Each object oit is

represented with its location lit (i.e., bounding boxes in the

image) and appearance features φi
t. To study the visibility

fluent of a subject, we further incorporate a state variable sit
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Figure 3. (a) The proposed Causal And-Or Graph (C-AOG) model for the fluent of visibility. We use a C-AOG to represent the

visibility status of an subject. Each OR node indicates a possible choice and an arrow shows how visibility fluent transits among states. (b)
A series of atomic actions that could possibly cause visibility fluent change. Each atomic action describes interactions among people

and interacting objects. “P”, “D”, “T”, “B” denotes “person”, “door”, “trunk”, “bag”, respectively. The dash triangle denotes fluent. The

corresponding fluent could be “visible”, “occluded” or “contained” for a person; “open”, “closed” or “occluded” for a vehicle door or

truck. See text for more details.

and an action label ait, that is,

oit =
(
lit, φ

i
t, s

i
t, a

i
t

)
. (2)

Thus, the state of a subject is defined as

sit ∈ S = { visible, occluded, contained } . (3)

We define a series of atomic actions Ω = {ai : i =
1, . . . , Na} that might change the visibility status, e.g.,

walking, opening vehicle door, etc. Fig. 3(b) illustrates a

small set of actions Ω covering the most common interac-

tions among people and vehicles.

Our goal is to jointly find subject locations in video

frames and estimate their visibility fluents M from the

video sequence I . Formally, we have

M = {pgt : t = 1, 2, . . . , T},
pgt = {oit = (lit, φ

i
t, s

i
t, a

i
t) | i = 1, 2, ..., Nt},

(4)

where pgt can be determined by the optimal causal parse

graph at time t.

4. Problem Formulation
According to Bayes’ rule, we can solve our joint object

tracking and fluent reasoning problem by maximizing a pos-

terior (MAP),

M∗ = arg max
M

p(M |I; θ)

∝ arg max
M

p(I|M ; θ) · p(M ; θ)

= arg max
M

1

Z
exp {−E(M ; θ)− E(I|M ; θ)}.

(5)

The prior term E(M ; θ) measures the temporal consistency

between successive parse graphs. Assuming G is a Markov

Chain structure, we can decompose E(M ; θ) as

E(M ; θ) =

T−1∑
t=1

E(pgt+1|pgt)

=
T−1∑
t=1

Nt∑
i=1

Φ(lit+1, l
i
t, s

i
t) + Ψ(sit+1, s

i
t, a

i
t).

(6)

The first term Φ(·) measures the location displacement.

It calculates the transition distance between two successive

frames and is defined as:

Φ(lit+1, l
i
t, s

i
t) =

{
δ(Ds(l

i
t+1, l

i
t) > τs), s

i
t = Visible,

1, sit = Occ, Con,

(7)

where Ds(·, ·) is the Euclidean distance between two lo-

cations on the 3D ground plane, τs is the speed threshold

and δ(·) is an indicator function. The location displacement

term measures the motion consistency of object in succes-

sive frames.

The second term Ψ(·) measures the state transition en-

ergy and is defined as:

Ψ(sit+1, s
i
t, a

i
t) = − log p(sit+1|sit, ait), (8)

where p(sit+1|sit, ait) is the action-state transition probabil-

ity, which can be learned from the training data.

The likelihood term E(I|M ; θ) measures how well each

parse graph explains the data, which can be decomposed as

E(I|M ; θ) =

T∑
t=1

E(It|pgt)

=

T∑
t=1

Nt∑
i=1

Υ(lit, φ
i
t, s

i
t) + Γ(lit, φ

i
t, a

i
t),

(9)
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where Υ(·) measures the likelihood between data and object

fluents, and Γ(·) measures the likelihood between data and

object actions. Given each object oit, the energy function

Υ(·) is defined as:

Υ(lit, φ
i
t, s

i
t) =

⎧⎪⎨
⎪⎩

1− ho(l
i
t, φ

i
t), sit = Visible,

σ(Dς(ς
i
1, ς

i
2)), sit = Occluded,

1− hc(l
i
t, φ

i
t), sit = Contained,

(10)

where ho(·) indicates the object detection score, hc(·) indi-

cates the container (i.e., vehicles) detection score, and σ(·)
is the sigmoid function. When an object is in either visible

or contained state, appearance information can describe the

probability of the existence of itself or the object contain-

ing it (i.e., container) at this location. When an object is

occluded, there is no visual evidence to determine its state.

Therefore, we utilize temporal information to generate can-

didate locations. We employ the SSP algorithm [29] to gen-

erate trajectory fragments (i.e., tracklets). The candidate

locations are identified as misses in complete object trajec-

tories. The energy is thus defined as the cost of generating

a virtual trajectory at this location. We compute this energy

by computing the visual discrepancy between a neighboring

tracklet ςi1 before this moment and a neighboring tracklet ςi2
after this moment. The appearance descriptor of a tracklet

is computed as the average pooling of image descriptor over

time. If the distance is below a threshold τς , a virtual path

is generated to connect these two tracklets using B-spline

fitting.

The term Γ(lit, φ
i
t, a

i
t) is defined over the object actions

observed from data. In this work, we study the fluents of

human and vehicles, that is,

Γ(lit, φ
i
t, a

i
t) = σ(Dh(l

i
t, φ

i
t|ait)) + σ(Dv(l

i
t, φ

i
t|ait)), (11)

where σ(·) is the sigmoid function. The definitions of the

two data-likelihood terms Dh and Dv are introduced in the

rest of this section.

A human is represented by his/her skeleton, which con-

sists of multiple joints estimated by sequential prediction

technology [36]. The feature of each joint is defined as

the relative distances of this joint to four saddle points(two

shoulders, the center of the body, and the middle between

the two hipbones). The relative distances are normalized

by dividing the length of head to eliminate the influence of

scale. A feature vector ωh
t concatenating the features of all

joints is extracted, which is assumed to follow a Gaussian

distribution:

Dh(l
i
t, φ

i
t|ait) = − log N(ωh

t ;μai
t
,Σai

t
), (12)

where μai
t

and Σai
t

are the mean and the covariance of the

action ait respectively, which are obtained from the training

data.

A vehicle is described with its viewpoint, semantic ve-

hicle parts, and vehicle part fluents. The vehicle fluent is

represented by a Hierarchical And-Or Graph, as illustrated

in Fig. 4. The feature vector of vehicle fluent ωv is obtained

by computing fluent scores on each vehicle part and con-

catenating them together. We compute the average pooling

feature 	ai for each action ai over the training data as the

vehicle fluent template. Given vehicle fluent ωv
t computed

on image It, the distance Dv(l
i
t, φ

i
t|ait) is defined as

Dv(l
i
t, φ

i
t|ait) = ‖ωv

t −	ai
t
‖2. (13)

5. Inference
We cast the intractable optimization of Eqn. (5) as an In-

teger Linear Formulation (ILF) in order to derive a scalable

and efficient inference algorithm. We use V to denote the

locations of vehicles, and E to denote the edges between

all possible pairs of nodes, whose time is consecutive and

locations are close. The whole transition graph G = (V,E)
is shown as Fig. 5. Then the energy function Eqn. (5) can

be re-written as:

f∗ = argmax
f

∑
mn∈Eo

cmnfmn,

cmn = −Φ(ln, lm, sm)−Ψ(sn, sm, am)−Υ(lm, φm, sm)

− Γ(lm, φm, am),

s.t. fmn ∈ {0, 1},
∑
m

fmn ≤ 1,
∑
m

fmn =
∑
k

fnk,

(14)

where fmn is the number of object moving from node Vm

to node Vn, cmn is the corresponding cost.
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Since the subject of interest can only enter a nearby con-

tainer (e.g., vehicle), to discover the optimal causal parse

graph, we need to jointly track the container and the sub-

ject of interest. Similar to Eqn. (14), the energy function of

container is as follows:

g∗ = argmax
g

∑
mn∈Ec

dmn gmn,

dmn = hc(lm, φm)− 1,

s.t. gmn ∈ {0, 1},
∑
m

gmn ≤ 1,
∑
m

gmn =
∑
k

gnk,

(15)

where hc(lm, φm) is the container detection score at loca-

tion lm. Then we add the contained constrains as:
∑

mn∈Ec

gmn ≥
∑

ij∈Eo

fij ,

s.t. tn = tj , ‖ln − lj‖2 < τc,

(16)

where τc is the distance threshold. Finally, we combine

Eqn. (14)-(16) to obtain objective function for our model:

f∗, g∗ = max
f,g

∑
mn∈Eo

cmnfmn +
∑

ij∈Ec

dmn gmn,

s.t. fmn ∈ {0, 1},
∑
m

fmn ≤ 1,
∑
m

fmn =
∑
k

fnk,

gmn ∈ {0, 1},
∑
i

gmn ≤ 1,
∑
i

gmn =
∑
k

gnk,

tn = tj , ‖ln − lj‖2 < τc.

(17)

The re-formulated graph still follows a directed acyclic

graph (DAG). Thus we can adopt the Dynamic Program-

ming technique to efficiently search for the optimal solu-

tion, as illustrated in the Fig. 5.

6. Experiments
We apply the proposed method on two tracking interact-

ing objects datasets and evaluate the improvement in visual

tracking brought by the outcomes of visibility status reason-

ing.

6.1. Implementation Details
We first utilize the Faster R-CNN models [30] trained on

the MS COCO dataset to detect involved agents (e.g., per-

son and suitcase). The used network is the VGG-16 net,

with score threshold 0.4 and NMS threshold 0.3. The track-

lets similarity threshold τς is set as 0.8. The contained dis-

tance threshold τc is set as the width of container 3 meters.

The maximum number of contained objects in a container

is set to 5. For appearance descriptors φ, we employ the

dense sampling ColorNames descriptor [43], which applies

square root operator [2] and Bag-of-word encoding to the

original ColorNames descriptors. For human skeleton esti-

mation, we use the public implementation of [36]. For ve-

hicle detection and semantic part status estimation, we use

the implementation provided by [22] with default parame-

ters mentioned in their paper.

We adopt the widely used CLEAR metrics [19] to mea-

sure the performances of tracking methods. It includes four

metrics, i.e., Multiple Object Detection Accuracy (MODA),

Detection Precision (MODP), Multiple Object Tracking

Accuracy (MOTA) and Tracking Precision (MOTP), which

take into account three kinds of tracking errors: false posi-

tives, false negatives and identity switches. We also report

the number of false positives (FP), false negatives (FN),

identity switches (IDS) and fragments (Frag). A higher

value means better for MODA, MODP, MOTA and MOTP,

while a lower value means better for FP, FN, IDS and Frag.

If the Intersection-over-Union (IoU) ratio of tracking results

to groundtruth is above 0.5, we accept the tracking result as

a correct hit.

6.2. Datasets
People-Car dataset [34]1. This dataset consists of

5 groups of synchronized sequences on a parking lot,

recorded from two calibrated bird-view cameras, with

length of 300 ∼ 5100 frames. In this dataset, there are many

instances of people getting in and out of cars. This dataset

is challenging for the frequent interactions, light variation

and low object resolution.

Tracking Interacting Objects (TIO) dataset. For

current popular multiple object tracking datasets (e.g.,

PETS09 [12], KITTI dataset [15]), most tracked objects

are pedestrian and no evident interaction visibility fluent

changes. Thus we collect two new scenarios with typical

human-object interactions: person, suitcase, and vehicle on

several places.

Plaza. We capture 22 video sequences in a plaza that

describe people walking around, getting in/out vehicles.

ParkingLot. We capture 15 video sequences in a park-

ing lot that shows vehicles entering/exiting the parking

lot, people getting in/out vehicles, people interacting with

1This dataset is available at cvlab.epfl.ch/research/surv/
interacting-objects



People-Car Metric Our-full Our-1 Our-2 POM [14] SSP [29] LP2D [21] LP3D [21] KSP-fixed [4] KSP-free [4] KSP-seq [4] TIF-LP [35] TIF-MIP [35]

Seq.0

FP ↓ 0.17 0.34 0.20 0.06 0.04 0.05 0.05 0.46 0.10 0.46 0.07 0.07

FN ↓ 0.08 0.53 0.12 0.47 0.76 0.48 0.53 0.61 0.41 0.61 0.25 0.25

IDS ↓ 0.05 0.07 0.05 - 0.04 0.06 0.06 0.07 0.07 0.07 0.04 0.04

MODA ↑ 0.71 0.27 0.63 0.47 0.20 0.47 0.42 -0.07 0.49 -0.07 0.67 0.67

Seq.1

FP ↓ 0.21 0.70 0.28 0.98 0.75 0.77 0.75 0.77 0.71 0.75 0.17 0.17

FN ↓ 0.12 0.26 0.14 0.23 0.25 0.21 0.25 0.25 0.25 0.25 0.25 0.25

IDS ↓ 0.04 0.13 0.04 - 0.12 0.17 0.21 0.06 0.12 0.15 0.04 0.04

MODA ↑ 0.62 0.09 0.54 -0.21 0.00 0.02 0.00 -0.02 0.04 0.00 0.58 0.58

Seq.2

FP ↓ 0.03 0.05 0.04 0.03 0.00 0.03 0.00 0.05 0.00 0.05 0.03 0.03

FN ↓ 0.28 0.58 0.32 0.47 0.59 0.62 0.58 0.72 0.59 0.72 0.47 0.47

IDS ↓ 0.01 0.03 0.02 - 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.01

MODA ↑ 0.57 0.39 0.48 0.50 0.41 0.35 0.42 0.23 0.41 0.23 0.50 0.50

Seq.3

FP ↓ 0.18 0.39 0.21 0.59 0.35 0.43 0.27 0.46 0.43 0.43 0.14 0.14

FN ↓ 0.07 0.32 0.10 0.17 0.31 0.23 0.40 0.19 0.23 0.19 0.21 0.21

IDS ↓ 0.06 0.26 0.06 - 0.27 0.34 0.33 0.19 0.25 0.21 0.07 0.05

MODA ↑ 0.68 0.35 0.62 0.24 0.34 0.34 0.33 0.35 0.34 0.38 0.65 0.65

Seq.4

FP ↓ 0.16 0.27 0.18 0.40 0.19 0.26 0.13 0.32 0.25 0.31 0.08 0.07

FN ↓ 0.10 0.18 0.13 0.15 0.19 0.16 0.18 0.17 0.17 0.16 0.16 0.15

IDS ↓ 0.05 0.15 0.05 - 0.14 0.13 0.15 0.12 0.12 0.11 0.04 0.04

MODA ↑ 0.82 0.59 0.73 0.45 0.62 0.58 0.69 0.51 0.58 0.53 0.76 0.78

Table 1. Quantitative results and comparisons of false positive (FP) rate, false negative (FN) rate and identity switches (IDS) rate on
People-Car Dataset. The best scores are marked in bold.

Plaza MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓
Our-full 46.0% 76.4% 99 501 5 8

Our-1 31.9% 75.1% 40 643 29 36

Our-2 32.5% 75.3% 75 605 25 30

MHT D [20] 34.3% 73.8% 56 661 15 18

MDP [38] 32.9% 73.2% 24 656 9 7

DCEM [26] 32.3% 76.5% 2 675 2 2

SSP [29] 31.7% 72.1% 19 678 21 25

DCO [1] 29.5% 76.4% 22 673 6 2

JPDA m [18] 13.5% 72.2% 163 673 6 3

ParkingLot MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓
Our-full 38.6% 78.6% 418 1954 6 5

Our-1 28.7% 78.4% 451 2269 15 17

Our-2 28.9% 78.4% 544 2203 14 16

MDP [38] 30.1% 76.4% 397 2296 26 22

DCEM [26] 29.4% 77.5% 383 2346 16 15

SSP [29] 28.9% 75.0% 416 2337 12 14

MHT D [20] 25.6% 75.7% 720 2170 15 12

DCO [1] 24.3% 78.1% 536 2367 38 10

JPDA m [18] 12.3% 74.2% 1173 2263 28 17

Table 2. Quantitative results and comparisons of false positive

(FP), false negative (FN), identity switches (IDS), and fragments

(Frag) on TIO dataset. The best scores are marked in bold.

trunk/suitcase.

All video sequences are captured by a GoPro camera,

with frame rate 30fps and resolution 1920 × 1080. We

use the standard chessboard and Matlab camera calibration

toolbox to obtain camera parameters. The total number of

frames of TIO dataset is more than 30K. There exist severe

occlusions and large scale changes, making this dataset very

challenging for traditional tracking methods.

Beside the above testing data, we collect another set of

video clips for training. To avoid over-fitting, we set up dif-

ferent camera positions, different people and vehicles from

the testing settings. The training data consists of 380 video

clips covering 9 events: walking, opening vehicle door, en-
tering vehicle, exiting vehicle, closing vehicle door, opening
vehicle trunk, loading baggage, unloading baggage, closing
vehicle trunk. Each action category contains 42 video clips

on average.

Both the datasets and short video clips are annotated with

bounding boxes for people, suitcases, vehicles, and visibil-

ity fluents of people and suitcases. The types of status are

“visible”, “occluded”, and “contained”. We utilize VATIC

[32] to annotate the videos.

6.3. Results and Comparisons
For People-Car dataset, we compare our proposed

method with 5 baseline methods and their variants: succes-

sive shortest path algorithm (SSP) [29], K-Shortest Paths

Algorithm (KSP-fixed, KSP-free, KSP-seq) [4], Probability

Occupancy Map (POM) [14], Linear Programming (LP2D,

LP3D) [21], and Tracklet-Based Intertwined Flows (TIF-IP,

TIF-MIP) [35]. We refer the reader to [35] for more details

about the method variants. The quantitative results are re-

ported in Table 1. From the results, we can observe that the

proposed method obtains better performance than the base-

line methods.

For TIO dataset, we compare the proposed method

with 6 state-of-the-arts: successive shortest path algorithm

(SSP) [29], multiple hypothesis tracking with distinctive

appearance model (MHT D) [20], Markov Decision Pro-

cesses with Reinforcement Learning (MDP) [38], Discrete-

Continuous Energy Minimization (DCEM) [26], Discrete-

continuous optimization (DCO) [1] and Joint Probabilistic

Data Association (JPDA m) [18]. We use the public imple-

mentations of these methods.

We report quantitative results and comparisons in Table 2



TIO-Plaza TIO-ParkingLot People-Car

Figure 6. Sampled qualitative results of our proposed method on TIO dataset and People-Car dataset. Each color represents an

object. The solid bounding box means the visible object. The dash bounding box denotes the object is contained by other scene entities.

Best viewed in color and zoom in.

for TIO dataset. From the results, we can observe that our

method obtains superior performance to the other methods

on most metrics. It validates that the proposed method can

not only track visible objects correctly, but also reason lo-

cations for occluded or contained objects. The alternative

methods do not work well mainly due to lack of the ability

to track objects under long-term occlusion or containment

in other objects.

Figure 7. Sampled failure cases. When people stay behind ve-

hicles, it is hard to determine whether or not they are interacting

with the vehicle, e.g., entering, exiting.
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Figure 8. Visibility fluent estimation results on TIO dataset.

We set up three baselines to analyze the effectiveness of

different components in the proposed method:

• Our-1: no likelihood term and only prior term is used.

• Our-2: only human data-likelihood term and prior term

are used.

• Our-full: all terms are used, including prior terms, human

and vehicle data-likelihood terms.

Based on comparisons of Our-1, Our-2 and Our-full, we

can also conclude that each type of fluent plays its role in

improving the final tracking results. Some qualitative re-

sults are displayed in Fig. 6.

We further report fluent estimation results on TIO-Plaza

sequences and TIO-ParkingLot sequences in Fig. 8. From

the results, we can see that our method can successfully rea-

son the visibility status of subjects. Note that the precision

of containment estimation is not high, since some people

get in/out the vehicle from the opposite side towards the

camera, as shown in Fig. 7. Under such situation, there are

barely any image evidence to reason the object status and

multi-view setting might be a better way to reduce the am-

biguities.

7. Conclusion
In this paper, we propose a Causal And-Or Graph (C-

AOG) model to represent the causal-effect relations be-

tween object visibility fluents and various human interac-

tions. By jointly modeling short-term occlusions and long-

term occlusions, our method can explicitly reason the vis-

ibility of subjects as well as their locations in the videos.

Our method clearly outperforms the alternative methods in

complicated scenarios with frequent object interactions. In

this work, we focus on the human-interactions as a running-

case of the proposed technique, and we will explore the ex-

tension of our method to other types of objects (e.g., animal,

drones) in the future.
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