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Abstract

Vision transformer networks have shown superiority in many computer vision
tasks. In this paper, we take a step further by proposing a novel generative vision
transformer with latent variables following an informative energy-based prior for
salient object detection. Both the vision transformer network and the energy-based
prior model are jointly trained via Markov chain Monte Carlo-based maximum
likelihood estimation, in which the sampling from the intractable posterior and prior
distributions of the latent variables are performed by Langevin dynamics. Further,
with the generative vision transformer, we can easily obtain a pixel-wise uncertainty
map from an image, which indicates the model confidence in predicting saliency
from the image. Different from the existing generative models which define the
prior distribution of the latent variables as a simple isotropic Gaussian distribution,
our model uses an energy-based informative prior which can be more expressive
to capture the latent space of the data. We apply the proposed framework to both
RGB and RGB-D salient object detection tasks. Extensive experimental results
show that our framework can achieve not only accurate saliency predictions but
also meaningful uncertainty maps that are consistent with the human perception.

1 Introduction

In the field of computer vision, salient object detection [64, 65, 16, 17, 5, 89] (SOD) or visual saliency
prediction, which aims at highlighting objects more attentive than the surrounding areas in images, has
achieved significant performance improvement with the deep convolutional neural network revolution.
Given a set of training images along with their saliency annotations, the conventional SOD models
seek to learn a deterministic one-to-one mapping from image domain to saliency domain.

Two main issues exist in the above conventional deep saliency prediction framework: (i) the convolu-
tion operation based on sliding window makes the deep saliency prediction model less effective in
modeling the global contrast of the image, which is essential for salient object detection [7]; (ii) the
one-to-one deterministic mapping mechanism makes the current framework not only impossible to
represent the pixel-wise uncertainty in predicting salient objects, but also hard to handle incomplete
data in a weakly supervised scenario [89]. Besides, given an image, the saliency output of a human
is subjective, therefore, a stochastic generative model is more natural than a deterministic model
for representing saliency prediction. Although [85] introduces a conditional variational autoencoder
(CVAE) [56] for RGB-D salient object detection, the potential posterior collapse problem [23] makes
the stochastic predictions less effective in generating meaningful uncertainty estimation.

Motivated by the above two issues, we propose a novel framework, the generative vision transformer,
for salient object detection, where a vision transformer structure [40] is used as a backbone and latent
variables are introduced in designing our generative framework. On the one hand, transformers [60]
have proven to be very effective in long-range dependency modeling, and are capable of modeling
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various scopes of object context information with the multi-head self-attention module. With such an
architecture, we can achieve global context modeling for effective salient object detection. On the
other hand, the latent variables account for randomness and uncertainty in modeling the mapping
from image domain to saliency domain, and also enable the model to produce stochastic saliency
predictions for uncertainty estimation. Therefore, the proposed model is a latent variable transformer.

Nowadays, there are two types of generative models that have been widely used, namely the varia-
tional autoencoder (VAE) [31] and the generative adversarial network (GAN) [20], which correspond
to two different generative learning strategies to train latent variable models. To train a top-down
latent variable generator, the VAE introduces an extra encoder to approximate the intractable pos-
terior distribution of the latent variables, and trains the generator via a perturbation of maximum
likelihood; while the GAN introduces a discriminator to distinguish between generated samples and
real data, and trains the generator to fool the discriminator. [22, 69] present the third learning strategy,
namely alternating back-propagation (ABP), to train the generator with latent variables being directly
sampled from the true posterior distribution by using a gradient-based Markov chain Monte Carlo
(MCMC) [38], e.g., Langevin dynamics [43, 66, 12]. All the three generative models define the prior
distribution of the latent variables as a simple non-informative isotropic Gaussian distribution, which
is less expressive in capturing meaningful latent representation of the data.

In this paper, we investigate generative modeling and learning of the vision transformer. We construct
a generative model for salient object detection in the form of a top-down conditional latent variable
model. Specifically, we propose a generative vision transformer by adding latent variables into the
traditional deterministic vision transformer, and assume the latent variables follow an informative
trainable energy-based prior distribution [47, 48]. Following [72], we parameterize the energy
function of the energy-based model (EBM) by a deep net. Instead of using variational learning or
adversarial learning, we jointly train the parameters of the EBM prior and the transformer network by
maximum likelihood estimation (MLE). The MLE algorithm relies on MCMC sampling to evaluate
the intractable prior and posterior distributions of the latent variables.

Experimental results on RGB and RGB-D salient object detections [64, 68, 85, 16] show that the
generative framework equipped with the EBM prior and the transformer-based non-linear mapping is
powerful in representing the conditional distribution of object saliency given an image, leading to
more reasonable uncertainty estimation as shown in Figure 1, where stochastic saliency prediction is
provided by a learned model and the visualization of the pixel-wise uncertainty is presented.

Figure 1: An illustration of the stochastic saliency prediction obtained by the proposed generative
vision transformer with an EBM prior, as well as the corresponding pixel-wise uncertainty map.

We summarize our main contributions and novelties as follows: (i) we propose a novel top-down
generative vision transformer network with an energy-based prior distribution defined on latent space
for salient object detection; (ii) we jointly train the vision transformer network and the energy-based
prior model by an MCMC-based maximum likelihood estimation, without relying on any extra
assisting network for adversarial learning or variational learning; (iii) we achieve new benchmark
results for both RGB and RGB-D salient object detections, and obtain meaningful uncertainty maps
that are highly consistent with human perception for saliency prediction.

2 Related Work

Salient object detection: The main goal of the existing deep fully-supervised RGB image-based
salient object detection models [67, 41, 68, 64, 61, 87, 65] is to achieve structure preserving saliency
prediction, by either sophisticated feature aggregation [67, 61], auxiliary edge detection [68, 52, 65],
or resorting to structure-aware loss functions [41, 64]. With extra depth information, RGB-D salient
object detection models [53, 85, 5, 27, 93, 90, 16, 28, 51, 92, 59, 86] mainly focus on effective
multi-modal modeling. Our paper solves the same problems, i.e., RGB and RGB-D salient object
detection, by developing a new generative transformer-based framework.
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Vision transformers: The breakthroughs of the Transformer networks [60] in natural language
processing (NLP) domain have sparked the interest of the computer vision community in develop-
ing vision transformers for different computer vision tasks, such as image classification [10, 40],
object detection [4, 63, 6, 40], image segmentation [96, 54, 63, 40], object tracking [80, 81], pose
estimation [42, 58], etc. Among them, DPT [54] adopts a U-shape structure and uses ViT [10] as an
encoder to perform semantic segmentation and monocular depth estimation. Swin [40] presents a
hierarchical transformer with a shifted windowing scheme to achieve an efficient transformer network
with high resolution images as input. Different from the above vision transformers that mainly focus
on discriminative modeling and learning, our paper emphasizes generative modeling and learning of
the vision transformer by involving latent variables and MCMC inference.

Dense prediction with generative models: VAEs have been successfully applied to image segmenta-
tion [3, 32]. For saliency prediction, [34] adopts a VAE to model the image background, and separates
salient objects from the background through reconstruction residuals. [85, 84] design CVAEs to
model the subjective nature of saliency. GAN-based methods can be divided into two categories,
namely fully-supervised and semi-supervised settings. The former [21, 33] uses the discriminator to
distinguish model predictions from ground truths, while the latter [57, 26] uses the GAN to explore
the contribution of unlabeled data. [88] uses a cooperative learning framework [71, 74] for generative
saliency prediction. [84] trains a single top-down generator in the ABP framework for RGB-D
saliency prediction. Our model generalizes [84] by replacing the simple Gaussian prior by a learnable
EBM prior and adopting a vision transformer-based generator for salient object prediction.

Energy-based models: Recent works have shown strong performance of data space EBMs [72, 44]
in modeling high-dimensional complex dependencies, such as images [97, 95, 18, 11, 19], videos
[78, 79], 3D shapes [75, 76], and point clouds [73], and also demonstrated the effectiveness of latent
space EBMs [47] in improving the model expressivity for text [48], image [47], and trajectory [49]
generation. Our paper also learns a latent space EBM as the prior model but builds the EBM on top
of a vision transformer generator for image-conditioned saliency map prediction.

3 Generative Vision Transformer with Energy-Based Latent Space

3.1 Model

We formulate the supervised saliency prediction problem as a conditional generative learning problem.
Let I ∈ Rh×w×3 be an observed RGB image, s ∈ Rh×w×1 be the saliency map, and z ∈ R1×1×d be
the d-dimensional vector of latent variables, where h× w � d. Consider the following generative
model to predict a saliency map s from an image I,

s = Tθ(I, z) + ε, z ∼ pα(z), ε ∼ N (0, σ2
ε I), (1)

where Tθ is the non-linear mapping process from [z, I] to s with parameters θ, pα(z) is the prior
distribution with parameters α, and ε ∼ N (0, σ2

ε I) is the observation residual of saliency with σε
being given. Due to the stochasticity of the latent variables z, given an image I, its saliency map is
also stochastic. Such a probabilistic model is in accord with the uncertainty of the image saliency.

Following [47], the prior pα(z) is not assumed to be a simple isotropic Gaussian distribution as
GAN [20], VAE [31, 56] or ABP [22]. Specifically, it is in the form of the energy-based correction or
exponential tilting [72] of an isotropic Gaussian reference distribution p0(z) = N (0, σ2

zI), i.e.,

pα(z) =
1

Z(α)
exp [−Uα(z)] p0(z) ∝ exp

[
−Uα(z)−

1

2σ2
z

||z||2
]
, (2)

where Eα(z) = Uα(z) +
1

2σ2
z
||z||2 is the energy function that maps the latent variables z to a

scalar, and Uα(z) is parameterized by a multi-layer perceptron (MLP) with trainable parameters α.
The standard deviation σz is a hyperparameter. Z(α) =

∫
exp[−Uα(z)]p0(z)dz is the intractable

normalizing constant that resolves the requirement for a probability distribution to have a total
probability equal to one. pα(z) is an informative prior distribution in our model and its parameters α
need to be estimated along with the non-linear mapping function Tθ from the training data.

The mapping function Tθ is parameterized by a vision transformer [40] with self-attention mechanism,
which encodes the input image I and then decodes it along with the vector of latent variables z to the
saliency map s, thus, pθ(s|I, z) = N (Tθ(I, z), σ2

ε I). The resulting generative model is a conditional
directed graphical model that combines the EBM prior [47] and the vision transformer [40].
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3.2 Learning

The generative transformer with an energy-based prior, which is presented in Eq. (1), can be trained
via maximum likelihood estimation. For notation simplicity, let β = (θ, α). For the training examples
{(Ii, si), i = 1, ..., n}, the observed-data log-likelihood function is defined as

L(β) =

n∑
i=1

log pβ(si|Ii) =
n∑
i=1

log

[∫
pβ(si, zi|Ii)dzi

]
=

n∑
i=1

log

[∫
pα(zi)pθ(si|Ii, zi)dzi

]
.

Maximizing L(β) is equivalent to minimizing the Kullback-Leibler (KL) divergence between the
model pβ(s|I) and the data distribution pdata(s|I). The gradient of L(β) can be computed based on
∇β log pβ(s|I) = Epβ(z|s,I) [∇β log pβ(s, z|I)] = Epβ(z|s,I)[∇β(log pα(z) + log pθ(s|I, z))], (3)

where the posterior distribution pβ(z|s, I) = pβ(s, z|I)/pβ(s|I) = pα(z)pθ(s|I, z)/pβ(s|I).
The learning gradient in Eq. (3) can be decomposed into two parts, i.e., the gradient for the energy-
based model α

Epβ(z|s,I)[∇α log pα(z)] = Epα(z)[∇αUα(z)]− Epβ(z|s,I)[∇αUα(z)], (4)
and the gradient for the transformer θ

Epβ(z|s,I)[∇θ log pθ(s|I, z)] = Epβ(z|s,I)

[
1

σ2
ε

(s− Tθ(I, z))∇θTθ(I, z)
]
. (5)

∇αUα(z) in Eq. (4) and ∇θTθ(I, z) in Eq. (5) can be efficiently computed via back-propagation.
Both Eq. (4) and Eq. (5) include intractable expectation terms Ep(·), which can be approximated
by MCMC samples. To be specific, we can use a gradient-based MCMC, e.g., Langevin dynamics,
which is initialized with a Gaussian noise distribution p0, to draw samples from the energy-based
prior model pα(z) ∝ exp [−Eα(z)] by iterating

zt+1 = zt − δ∇zEα(zt) +
√
2δet, z0 ∼ p0(z), et ∼ N (0, I), (6)

and draw samples from the posterior distribution pβ(z|s, I) by iterating

zt+1 = zt−δ
[
∇zEα(zt)−

1

σ2
ε

(s− Tθ(I, zt))∇zTθ(I, zt)
]
+
√
2δet, z0 ∼ p0(z), et ∼ N (0, I).

(7)
δ is the Langevin step size and can be specified independently in Eq. (6) and Eq. (7). We use {z+i }
and {z−i } to denote, respectively, the samples from the posterior distribution pβ(z|s, I) and the prior
distribution pα(z). The gradients of α and θ can be computed with {(Ii, si)}, {z+i } and {z−i } by

∇α =
1

n

n∑
i=1

[∇αUα(z−i )]−
1

n

n∑
i=1

[
∇αUα(z+i )

]
, (8)

∇θ = 1

n

n∑
i=1

[
1

σ2
ε

(si − Tθ(Ii, z+i ))∇θTθ(Ii, z
+
i )

]
, (9)

We can update the parameters with ∇α and ∇θ via the Adam optimizer [30]. We present the full
learning and sampling algorithm of our model in Algorithm 1.

Algorithm 1 Maximum likelihood learning algorithm for generative vision transformer with energy-
based latent space for saliency prediction
Input: (1) Training images {Ii}ni with associated saliency maps {si}ni ; (2) Number of learning iterationsM ; (3)
Numbers of Langevin steps for prior and posterior {K−,K+}; (4) Langevin step sizes for prior and posterior
{δ−, δ+}; (5) Learning rates for energy-based prior and transformer {ξα, ξθ}; (6) batch size n′.
Output: Parameters θ for the transformer and α for the energy-based prior model
1: Initialize θ and α
2: for m← 1 to M do
3: Sample observed image-saliency pairs {(Ii, si)}n

′
i

4: For each (Ii, si), sample the prior z−i ∼ pαm(z) using K− Langevin steps in Eq. (6) with a step size
δ−.

5: For each (Ii, si), sample the posterior z+i ∼ pβm(z|si, Ii) using K+ Langevin steps in Eq. (7) with a
step size δ+.

6: Update energy-based prior by Adam with the gradient∇α computed in Eq. (8) and a learning rate ξα.
7: Update transformer by Adam with the gradient∇θ computed in Eq. (9) and a learning rate ξθ .
8: end for
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3.3 Network

Generative vision transformer: We design the generative vision transformer using the Swin
transformer [40] backbone as shown in Figure 2, which takes a three-channel image I and the
latent variables z as input and outputs a one-channel saliency map Tθ(I, z). Two main modules
are included in our generative vision transformer, including a “Transformer Encoder” module
and a “Feature Aggregation” module. The former takes I as input and produces a set of fea-
ture maps {fl}5l=1 of channel sizes 128, 256, 512, 1024 and 1024, respectively, while the latter
takes {fl}5l=1 and the vector of latent variables z as input to generate the saliency prediction s.

Figure 2: Generative latent variable vision transformer

Specifically, we first feed each fl to
a 3 × 3 convolutional layer to reduce
the channel dimension to 32, and ob-
tain a new set of feature maps {f ′l}5l=1
after channel reduction. Then, we repli-
cate the vector z spatially and perform
a channel-wise concatenation with f ′5,
followed by a 3× 3 convolutional layer
that seeks to produce a feature map
F5 with same number of channels as that of f ′5. Finally, we sequentially concatenate feature
maps from high level to low level via feature aggregation, i.e., from l = 4 to 1, we compute
Fl = Conv3×3(M(Concat(f ′l , Fl+1, ..., F5))), where Conv3×3(·) is a 3× 3 convolutional layer that
reduces the channel dimension to 32, M(·) is the channel attention module [91], and Concat(·) is the
channel-wise concatenation operation. Note that, we upsample the higher level feature map to the
same spatial size as that of the lower level feature map before the concatenation operation. We feed
F1 to a 3× 3 convolutional layer to obtain the one-channel saliency map Tθ(I, z).

Energy-based prior model: We design an energy-based model for the latent variables z by param-
eterizing the function Uα(z) via a multilayer perceptron (MLP), which uses three fully connected
layers to map the latent variables z to a scalar. The sizes of the feature maps of different layers of the
MLP are Ce, Ce and 1, respectively. We will simply use Ce to represent the size of the EBM prior
and set Ce = 60 in our experiment. GELU [25] activation is used after each layer except the last one.

3.4 Analysis

Convergence: Theoretically, when the Adam optimizer of β = (θ, α) in the learning algorithm
converges to a local minimum, it solves the following estimating equations

∇α = 0 ⇒ 1

n

n∑
i=1

Epβ(zi|si,Ii)[∇αUα(zi)]− Epα(z)[∇αUα(z)] = 0, (10)

∇θ = 0 ⇒ 1

n

n∑
i=1

Epβ(zi|si,Ii)

[
1

σ2
ε

(si − Tθ(Ii, zi))∇θTθ(Ii, zi)
]
= 0, (11)

which are the maximum likelihood estimating equations. However, in practise, the Langevin dynamics
in Eq. (8) and Eq. (9) might not converge to the target distributions due to the use of a small number
of Langevin steps (i.e., short-run MCMC), the estimating equations in Eq. (10) and Eq. (11) will
correspond to a perturbation of the MLE estimating equation according to [44, 45, 47]. The learning
algorithm can be justified as a Robbins-Monro [55] algorithm, whose convergence is theoretically
sound. Our model can also be trained with an extra encoder as an amortized inference network [31]
for pβ(z|s, I) and an extra generator as an amortized sampling network [70, 71, 77] for pα(z) . In
this work, we prefer to keep our training algorithm simple in order to avoid extra efforts for the design
of the auxiliary network architectures. We will study the joint training strategy in our future work.

Accuracy: Compared with the GAN-based generative framework, our model is a likelihood-based
generative framework that will not suffer from mode collapse [2]. In comparison with VAE-based gen-
erative framework, whose training is also based on likelihood, our MCMC-based maximum likelihood
learning algorithm will not encounter the posterior collapse issue that is caused by amortized inference.
On the other hand, the variational inference typically relies on an extra inference network for efficient
inference of the latent variables given an image and saliency pair, however, the approximate inference
might not be able to take the full place of the posterior distribution in practise. To be specific, we use
qφ(z|s, I) to denote the tractable approximate inference network with parameters φ. The variational
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Figure 3: Visual comparison of our model and the state-of-the-art saliency prediction model, the
BBSNet [16]. From top to bottom: images, ground truth saliency maps, results of the BBSNet [16]
and results obtained by our model.

inference seeks to optimize minβ minφ KL(pdata(s|I)qφ(z|s, I)||pβ(z, s|I)), which can be further
decomposed into minβ minφ KL(pdata(s|I)||pβ(s|I)) + KL(qφ(z|s, I)||pβ(z|s, I)). That is, the varia-
tional inference maximizes the conditional data likelihood plus a KL-divergence between the approxi-
mate inference network and the posterior distribution. Only when the KL(qφ(z|s, I)||pβ(z|s, I))→ 0,
the variational inference will lead to the MLE solution, which is exactly the objective of our model.
However, there might exist a gap between them in practise due to the improper design of the inference
network. Our learning algorithm is much simpler and more accurate than amortized inference.

Computational and memory costs analysis: From the learning perspective, due to the iterative
Langevin sampling for the posterior and prior distributions of latent variables, our model is more
time-consuming for training than generative models with amortized inference, such as VAE, which
is roughly 2.4 times faster than ours on RGB image-based salient object detection. However, for
VAE, the inference model is parameterized by another set of parameters, which need to be updated
by back-propagation. In our model, the Langevin dynamics is not treated as a model because once
the top-down generator is updated in each iteration, the posterior distribution can be derived from the
generator. With the posterior distribution, the Langevin sampling is just an optimization-like process
to find fair samples in the latent space defined by the posterior distribution. Without relying on an
extra inference network, our framework is efficient in memory and friendly for network design.

4 Experimental Results

4.1 Setup

Datasets: For RGB SOD, we train models on DUTS training set [62], and test them on five benchmark
datasets, including DUTS testing set, ECSSD [82], DUT [83], HKU-IS [35] and PASCAL-S [36]. For
RGB-D SOD, we follow the conventional training setting, in which the training set is a combination
of 1,485 images from NJU2K dataset [29] and 700 images from NLPR dataset [50]. We test the
trained models on NJU2K testing set, NLPR testing set, DES [8], SSB [46] and SIP [15] testing set.

Evaluation Metrics: We adopt four evaluation metrics to measure the performance, including Mean
Absolute ErrorM, Mean F-measure (Fβ), Mean E-measure (Eξ) [14] and S-measure (Sα) [13].

Implementation Details: Our generative vision transformer is built upon the Swin transformer [40]
and uses it as the backbone of the encoder in our framework. The Swin backbone can be initialized
with the parameters pretrained on the ImageNet-1K [9] dataset for image classification, and the
other parameters of the newly added components, including the decoder part and the MLP of the
energy based prior model, will be randomly initialized from the Gaussian distribution N (0, 0.01).
Empirically we set the number of dimensions d of the latent variables z as d = 32. We set σε = 1 in
Eq. (1) and σz = 1 in Eq. (2). We resize all the images and the saliency maps to the resolution of
384× 384 pixels to fit the Swin transformer. The maximum epoch is 50. The initial learning rates
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are 2.5× 10−5. The whole training takes 9 hours with a batch size n′ = 10 on one NVIDIA GTX
2080Ti GPU for each model. During testing, our model can process 15 images per second.

4.2 Performance Comparison

We compare our framework with the state-of-the-art RGB SOD models and RGB-D SOD models,
and show a comparison of performance in Table 1 and Table 2 respectively, where VST [39] is
the only transformer-based saliency detection model. We observe consistently better performance
of the proposed frameworks. Especially for PASCAL-S dataset [36], which contains more than
40% examples with large-sized salient objects, the significant performance gap between our method
and the existing solutions demonstrates the effectiveness of our generative framework for saliency
prediction. We further show a qualitative comparison between our RGB-D saliency prediction model
and the BBSNet [16] in Figure 3. As we can see, our transformer-based framework, with an effective
global context modeling, is superior to its competitor in detecting various sizes of salient objects.

Table 1: Performance comparison with benchmark RGB salient object detection models.
DUTS [62] ECSSD [82] DUT [83] HKU-IS [35] PASCAL-S [36]

Method Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓
CPD [67] .869 .821 .898 .043 .913 .909 .937 .040 .825 .742 .847 .056 .906 .892 .938 .034 .848 .819 .882 .071
SCRN [68] .885 .833 .900 .040 .920 .910 .933 .041 .837 .749 .847 .056 .916 .894 .935 .034 .869 .833 .892 .063
PoolNet [37] .887 .840 .910 .037 .919 .913 .938 .038 .831 .748 .848 .054 .919 .903 .945 .030 .865 .835 .896 .065
BASNet [52] .876 .823 .896 .048 .910 .913 .938 .040 .836 .767 .865 .057 .909 .903 .943 .032 .838 .818 .879 .076
EGNet [94] .878 .824 .898 .043 .914 .906 .933 .043 .840 .755 .855 .054 .917 .900 .943 .031 .852 .823 .881 .074
F3Net [64] .888 .852 .920 .035 .919 .921 .943 .036 .839 .766 .864 .053 .917 .910 .952 .028 .861 .835 .898 .062
ITSD [98] .886 .841 .917 .039 .920 .916 .943 .037 .842 .767 .867 .056 .921 .906 .950 .030 .860 .830 .894 .066
SCNet [88] .902 .870 .936 .032 .928 .930 .955 .030 .847 .778 .879 .053 .927 .917 .960 .026 .873 .846 .909 .058
LDF [65] .892 .861 .925 .034 .919 .923 .943 .036 .839 .770 .865 .052 .920 .913 .953 .028 .860 .856 .901 .063
VST [39] .896 .842 .918 .037 .932 .911 .943 .034 .850 .771 .869 .058 .928 .903 .950 .030 .873 .832 .900 .067
Ours .908 .875 .942 .029 .935 .935 .962 .026 .858 .797 .892 .051 .930 .922 .964 .023 .877 .855 .915 .054

Table 2: Performance comparison with benchmark RGB-D salient object detection models.
NJU2K [29] SSB [46] DES [8] NLPR [50] SIP [15]

Method Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓
BBSNet [16] .921 .902 .938 .035 .908 .883 .928 .041 .933 .910 .949 .021 .930 .896 .950 .023 .879 .868 .906 .055
BiaNet [92] .915 .903 .934 .039 .904 .879 .926 .043 .931 .910 .948 .021 .925 .894 .948 .024 .883 .873 .913 .052
CoNet [28] .911 .903 .944 .036 .896 .877 .939 .040 .906 .880 .939 .026 .900 .859 .937 .030 .868 .855 .915 .054
UCNet [85] .897 .886 .930 .043 .903 .884 .938 .039 .934 .919 .967 .019 .920 .891 .951 .025 .875 .867 .914 .051
JLDCF [17] .902 .885 .935 .041 .903 .873 .936 .040 .931 .907 .959 .021 .925 .894 .955 .022 .880 .873 .918 .049
DSA2F [59] .903 .901 .923 .039 .904 .898 .933 .036 .920 .896 .962 .021 .918 .897 .950 .024 - - - -
VST [39] .922 .898 .939 .035 .913 .879 .937 .038 .943 .920 .965 .017 .932 .897 .951 .024 .904 .894 .933 .040
Ours .929 .924 .956 .028 .916 .898 .950 .032 .945 .928 .971 .016 .938 .921 .966 .018 .906 .908 .940 .037

4.3 Backbone Analysis

To test the performance of the transformer structure proposed in Section 3.3, we compare it with a
conventional convolutional backbone for salient object detection. We create the baseline by replacing
the Swin encoder in our transformer structure by the ResNet50 [24] encoder and keeping the decoder
part (i.e., the “Feature Aggregation” module shown in Figure 2) unchanged for a fair comparison.

We first test them without involving latent variables, which means that we need to train them in a
discriminative manner. We use “Ours-Swin-D” to denote the model using the Swin encoder and “Ours-
Res50-D” to denote the one using the ResNet50 encoder. Model performance in the task of RGB-D
saliency detection are shown in Table 3. We observe that “Ours-Swin-D” outperforms “Ours-Res50-
D”, which clearly indicates the effectiveness of transformer backbone for salient object detection.

Table 3: Analysis of different backbones without involving latent variables.
NJU2K [29] SSB [46] DES [8] NLPR [50] SIP [15]

Method Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓
Ours-Res50-D .908 .896 .931 .036 .906 .889 .927 .037 .918 .907 .948 .022 .921 .893 .951 .024 .874 .856 .917 .049
Ours-Swin-D .919 .923 .947 .032 .914 .897 .943 .033 .931 .919 .959 .022 .933 .912 .951 .022 .897 .899 .931 .041
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Table 4: Performance of different backbones within our model for RGB saliency prediction.
DUTS [62] ECSSD [82] DUT [83] HKU-IS [35] PASCAL-S [36]

Method Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓ Sα ↑ Fβ ↑Eξ ↑M ↓
Ours-Res50 .890 .850 .927 .035 .918 .914 .944 .036 .837 .762 .867 .053 .917 .906 .952 .029 .859 .830 .896 .063
Ours-DPT .899 .874 .940 .031 .924 .933 .956 .031 .854 .792 .890 .054 .922 .920 .960 .026 .870 .854 .911 .055
Ours-Swin .908 .875 .942 .029 .935 .935 .962 .026 .858 .797 .892 .051 .930 .922 .964 .023 .877 .855 .915 .054

Table 5: Performance of different backbones within our model for RGB-D saliency prediction.
NJU2K [29] SSB [46] DES [8] NLPR [50] SIP [15]

Method Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓
Ours-Res50 .919 .909 .946 .033 .906 .882 .937 .038 .937 .925 .974 .017 .920 .892 .949 .025 .882 .872 .918 .049
Ours-DPT .924 .913 .950 .031 .915 .892 .946 .034 .941 .921 .968 .017 .935 .913 .964 .019 .901 .903 .933 .038
Ours-Swin .929 .924 .956 .028 .916 .898 .950 .032 .945 .928 .971 .016 .938 .921 .966 .018 .906 .908 .940 .037

We further study the influence of different encoder backbones in the context of the proposed generative
saliency prediction framework with an EBM prior. Table 4 and Table 5, respectively, depict the
performance comparisons of our frameworks using different backbones in the tasks of RGB and RGB-
D salient object detections. We compare the ResNet50 encoder backbone and the Swin transformer
encoder backbone. We also modify the DPT [54] backbone such that it can adapt to the tasks of RGB
and RGB-D salient object detections with our framework. The DPT built on the ViT transformer [10]
is originally designed for semantic segmentation and depth estimation. The comparison results verify
the effectiveness of the vision transformer used in our generative framework. In particular, our current
solution with the Swin transformer encoder backbone can achieve the best performance for saliency
prediction. Further, the performance gap between “Ours-Swin-D” in Table 3 and “Ours-Swin” in
Table 5 indicates the effectiveness of the generative learning with an expressive latent space.

4.4 Generative Learning Analysis

We compare our framework with other alternative generative solutions in Table 6. The results are
reported in the task of RGB-D saliency detection. For fair comparison, we implement an ABP-based
model [22], a GAN-based model [20], and a VAE-based model [31, 56] using the same transformer-
based generator as ours. The latent variables in these models are still assumed to follow the isotropic
Gaussian distribution, as in their original algorithms. To be specific, for the ABP-based model,
we use MCMC-based inference while training, and sample the latent variables directly from the
Gaussian distribution during testing. For the GAN-based alternative, we design a fully convolutional
discriminator [26] that consists of five 3 × 3 convolutional layers with a stride of 2 in each layer.
The discriminator takes the concatenation of an image and a saliency map as input, and is trained to
distinguish between the predicted saliency map and the ground truth given an image. The numbers of
the output channels of the discriminator are 64, 64, 64, 64 and 1. For the VAE-based alternative, we
introduce an extra encoder as an approximate Gaussian inference model via the reparameterization
trick. The encoder consists of four 4 × 4 convolutional layers with a stride of 2 in each layer and
maps the concatenation of an image and a saliency map to feature maps of channel sizes 64, 64, 64
and 64 sequentially. After that, two fully connected layers are adopted to produce the mean and the
standard deviation of the inference model. For all the three alternative generative models, we set the
numbers of the dimension of the latent space the same as that in our model, which is d = 32.

Table 6: Performance of different generative models with transformer backbones for SOD.
NJU2K [29] SSB [46] DES [8] NLPR [50] SIP [15]

Method Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓ Sα ↑ Fβ ↑ Eξ ↑M ↓
ABP .920 .915 .951 .030 .910 .890 .942 .035 .935 .920 .962 .018 .930 .914 .962 .020 .900 .898 .935 .039
GAN .928 .922 .954 .030 .913 .892 .941 .033 .940 .924 .969 .018 .934 .915 .961 .021 .901 .904 .937 .039
VAE .928 .921 .955 .029 .914 .894 .947 .033 .942 .922 .970 .017 .934 .914 .961 .020 .904 .906 .935 .038
Ours .929 .924 .956 .028 .916 .898 .950 .032 .945 .928 .971 .016 .938 .921 .966 .018 .906 .908 .940 .037

As shown in Table 6, compared with the deterministic baseline “Ours-Swin-D” (in Table 3), the three
generative frameworks in achieve better or comparable performance. Especially in the DES dataset [8],
they achieve large performance improvements. Our model outperforms all these alternative generative
solutions, showing the effectiveness of the informative EBM prior distribution used in our model.
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4.5 Hyperparameter Analysis

The main hyperparameters in our framework include the number of Langevin steps K, the Langevin
step size δ, the number of dimensions of the latent space d, and the size of EBM prior Ce. We have
two sets of hyperparameters {δ−,K−} and {δ+,K+} of the Langevin dynamics for sampling from
the prior distribution and the posterior distribution, respectively. As to the Langevin step size, we
find stable model performance with δ− ∈ [0.2, 0.6] and δ+ ∈ [0.05, 0.3], and we set δ− = 0.4 and
δ+ = 0.1 in our paper. For the number of Langevin steps, we empirically set K− = K+ = 5 to
achieve a trade-off between the training efficiency and the model performance, as more Langevin
steps will lead to longer training time but more convergent inference results. Additionally, we
investigate the influence of the number of latent dimensions by varying d = {8, 16, 32, 64}, and
observe comparable performance among different choices of d. We set d = 32 in our paper. We also
investigate the influence of the EBM size by varying Ce = {20, 60, 100}, and show the results in
Table 7, in which we find Ce = 60 can provide optimal saliency prediction performance.

Table 7: Influence of the size of the EBM prior model
NJU2K [29] SSB [46] DES [8] NLPR [50] SIP [15]

Method Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓ Sα ↑Fβ ↑Eξ ↑M ↓
Ce = 20 .930 .913 .957 .026 .917 .898 .950 .030 .951 .921 .970 .016 .937 .913 .950 .022 .901 .892 .931 .037
Ce = 100 .926 .904 .950 .031 .916 .891 .952 .031 .942 .930 .970 .016 .939 .913 .960 .021 .903 .895 .934 .036
Ours (Ce = 60) .929 .924 .956 .028 .916 .898 .950 .032 .945 .928 .971 .016 .938 .921 .966 .018 .906 .908 .940 .037

4.6 Explainability Analysis

As a generative model, our framework is capable of obtaining a meaningful uncertainty map that
summarizes the stochastic behavior of the model in performing saliency prediction. The uncertainty
in our paper refers to the stochastic property of generating the saliency prediction from an input image,
which is captured by the probabilistic model pβ(s|I). In general, a generative saliency prediction
method can provide not only accurate predictions but also reasonable uncertainty maps that represent
the “subjective nature” of the human visual saliency. In this section, we propose to use the uncertainty
map to help qualitatively evaluate different generative saliency prediction frameworks. Specifically,
we propose to compute the uncertainty map as the variance of multiple saliency predictions produced
from the learned probabilistic model. In the experiment, for each input image, we first output ten
saliency maps by using the Langevin sampling from the learned conditional distribution, and then
compute the variance map (uncertainty) based on the generated saliency predictions.

To quantify the complexity of a color image, we calculate a complexity score by the following way:
(i) we first over-segment the image with the SLIC [1] to obtain 200 superpixels, (ii) then we compute
the similarity of each superpixel with the others using handcrafted features from [99], which gives us
a 200-dimensional contrast vector, representing an overall contrast of the image, (iii) we define the
complexity of the image as the mean entropy of the contrast vector. The higher the score, the more
complicated the image. In general, a reasonable generative saliency prediction model should have
more confident predictions on images with simpler backgrounds (i.e., lower complexity scores), and
less confident predictions on images with complicated backgrounds (i.e., higher complexity scores).

In Figure 4, we compare the uncertainty maps of different generative models that we have presented
in Section 4.4. For each row of Figure 4, we display an input image, which is tagged with an
image complexity score, and the associated ground truth saliency map, followed by the predicted
saliency maps and the uncertainty maps obtained by the ABP-based model, the GAN-based model,
the VAE-based model, and our model, respectively. As shown in Figure 4, the complexity score of
each image is reasonable in the sense that it is consistent with the human perception. We observe
that the uncertainty maps obtained by the other generative models fail to reflect the difficulties of
the images for saliency prediction. For example, the image shown in the first row of Figure 4 has
a structured foreground (i.e., a temple) and a textured background (i.e., a forest), which leads to a
large ambiguity of the boundary between the foreground and the background. The uncertainty map
obtained by our model indicates a big variance around the boundary region, which demonstrates
the explainability and the reasonability of our model. Note that only generative saliency prediction
frameworks can provide such an explainability analysis based on the uncertainty maps. This might
motivate us to develop generative frameworks for explainable saliency prediction in the future.
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Figure 4: A comparison of uncertainty maps obtained by different generative saliency prediction
frameworks for explainability analysis. Each row represents one example, in which we display an
image tagged with a complexity score, the corresponding ground truth saliency map, as well as the
predicted saliency maps and the uncertainty maps obtained by different generative frameworks.

5 Conclusion and Discussion

In this paper, we study the generative modeling and learning of vision transformer in the context
of RGB and RGB-D salient object detections. We start from defining a conditional probability
distribution of saliency map given an input image by a top-down latent variable generative framework,
in which the non-linear mapping from image domain to saliency domain is parameterized by a
proposed vision transformer network and the prior distribution of the low-dimensional latent space is
represented by a trainable energy-based model. Instead of using amortized inference and sampling
strategies, we learn the model by the MCMC-based maximum likelihood, where the Langevin
sampling is used to evaluate the intractable posterior and prior distributions of the latent variables
for calculating the learning gradients of the model parameters. With the informative energy-based
prior and the expressive top-down vision transformer network, our model can achieve both accurate
predictions and meaningful uncertainty maps that are consistent with the human perception.

From the machine learning perspective, our model is a likelihood-based top-down deep conditional
generative model, which is neither CGAN-based nor CVAE-based frameworks, and it is trained
without relying on any assisting network. The learning algorithm derived from the proposed model
is based on MCMC inference for the posterior and MCMC sampling for the prior, which makes
our framework more natural, principled, and statistically rigorous than others. The MCMC-based
inference is immediately available in the sense that there is nothing to worry about the non-trivial
design and training of a separate inference model as in VAEs. Such a framework is not only useful
for saliency prediction (Though this is what we target in this paper) but also applicable to a vast of
conditional learning scenarios, such as semantic segmentation, image-to-image translation, etc. Thus,
the proposed generative model and the learning algorithm are generic and universal.

From the computer vision perspective, our model with a special network design to handle saliency
prediction is a new member of the family of saliency prediction methods. In comparison with the
traditional discriminative saliency prediction methods, our generative method is natural and reasonable
because it models the saliency prediction as a conditional probability distribution. Moreover, it
demonstrates impressive performance over all RGB and RGB-D SOD benchmarks. As we know, the
computer vision community has started to develop vision transformer networks for various computer
vision tasks, such as image classification, segmentation, detection, generation, etc. Our paper is the
first one to present a generative vision transformer for both RGB and RGB-D saliency predictions.
Thus, the proposed framework is significantly important for the computer vision community.
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