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Abstract
Learning latent variable models with deep top-down ar-

chitectures typically requires inferring the latent variables
for each training example based on the posterior distribution
of these latent variables. The inference step typically relies
on either time-consuming long-run Markov chain Monte
Carlo (MCMC) sampling or a separate inference model for
variational learning. In this paper, we propose to use a short-
run MCMC, such as a short-run Langevin dynamics, as an
approximate flow-based inference engine. The bias existing
in the output distribution of the non-convergent short-run
Langevin dynamics is corrected by the optimal transport
(OT), which aims at transforming the biased distribution
produced by the finite-step MCMC to the prior distribution
with a minimum transport cost. Our experiments not only
verify the effectiveness of the OT correction for the short-run
MCMC, but also demonstrate that the latent variable model
trained by the proposed strategy performs better than the
variational auto-encoder (VAE) in terms of image recon-
struction/generation and anomaly detection.

1. Introduction

Recent years have seen a great success of deep generative
models in numerous computer vision applications, such as
image generation [10, 16, 13], image recovery [21, 12, 23],
image representation [33, 29], image disentanglement [35, 4,
25], anomaly detection [34, 31], etc. Such models typically
include simple and expressive generator networks, which
are latent variable models assuming that each observed ex-
ample is generated by a low-dimensional vector of latent
variables, and the latent vector follows a non-informative
prior distribution, such as Gaussian distribution. Since high
dimensional visual data (e.g., images) usually lie on low-
dimensional manifolds embedded in the high-dimensional
space, learning latent variable models of visual data is of fun-
damental importance in the field of computer vision for the

sake of unsupervised representation learning. The challenge
mainly comes from the inference of the latent variables for
each observation, which typically relies on Markov chain
Monte Carlo (MCMC) [24, 6] methods to draw fair samples
from the analytically intractable posterior distribution (i.e.,
the conditional distribution of the latent variables given the
observed example). Since the posterior distribution of the
latent variables is parameterized by a highly non-linear deep
neural network, the MCMC-based inference can suffer from
non-convergence and inefficiency problems, thus affecting
the accuracy of the model parameter estimation.

To avoid inefficient MCMC sampling from the posterior,
variational inference [16] becomes an attractive alternative
by approximating the intractable posterior via a tractable
network. Despite the growing prevalence and popularity of
the variational auto-encoder (VAE) [16], its drawbacks are
increasingly obvious. (i) It parameterizes the intrinsic itera-
tive inference process by an extrinsic feedforward inference
model. These extra parameters due to the reparameterization
have to be estimated together with those of the generator net-
work. (ii) Such a joint training is to be accomplished by max-
imizing the variational lower bound. Thus, the accuracy of
VAE heavily depends on the accuracy of the inference model
as an approximation of the true posterior distribution. Only
when the Kullback-Leibler (KL)-divergence between the in-
ference and the posterior distribution is equal to zero, the
variational inference is equivalent to the desired maximum
likelihood estimation. This goal is usually infeasible in prac-
tice. (iii) An extra effort is required to made in designing
the inference model of VAE, especially for the generators
that have complicated dependency structures with the latent
variables, e.g., [30] proposed a top-down generator with mul-
tiple layers of latent variables, [39, 40] proposed dynamic
generators with time sequences of latent variables. It is not
a simple task to design inference models that infer latent
variables for models mentioned above. An arbitrary design
of the inference model cannot guarantee the performance.
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In this paper, we will totally abandon the idea of reparam-
eterizing the inference process, and reuse the MCMC-based
inference for training deep latent variable models. To be
specific, we use a short-run MCMC, such as a short-run
Langevin dynamics [19, 26], to perform the inference of the
latent vectors during training. However, the convergence
of finite-step Langevin dynamics in each iteration might be
questionable, so we accept the bias existing in such a short-
run MCMC and propose to use the optimal transport (OT)
method [38] to correct the bias. The OT can be adopted
to transform an arbitrary probability distribution to a de-
sired distribution with a minimum transport cost. Thus, we
can use the OT cost to measure the difference between two
probability distributions. We treat the short-run MCMC
as a learned flow model whose parameters are from the la-
tent variable model. We correct the bias of the short-run
MCMC by performing an optimal transport from the result
distribution produced by the short-run MCMC to the prior
distribution. This operation is to minimize the OT cost be-
tween the inference distribution and the prior distribution, in
which we don’t optimize any parameters in the flow model
but update its output. With the corrected inference output,
we can update the parameters of the latent variable model
more accurately.

Specifically, our algorithm iterates the following three
steps: (i) inference step: inferring the latent variables for
each observed example by a short-run Langevin dynamics
that samples from the posterior distribution; (ii) correction
step: moving the population of all the inferred latent vectors
to the prior distribution through optimal transport; (iii) learn-
ing step: update the model parameters by gradient descent
based on the corrected latent vectors and the corresponding
observed examples.

There are several advantages in the proposed algorithm:
(i) efficiency: The learning and inference of the model are
efficient with a short-run MCMC. (ii) convenience: The
approximate inference model represented by the short-run
MCMC is automatic in the sense that there is nothing to
worry about the design and training of a separate inference
model. Both bottom-up inference and top-down genera-
tion are governed by the same set of parameters. (iii) ac-
curacy: the optimal transport corrects the errors of the non-
convergent short-run MCMC inference, thus improves the
accuracy of the model parameter estimation.

The contributions of the paper are three-fold: (i) We
propose to train a deep latent variable model by a non-
convergent short-run MCMC inference with OT correction.
(ii) We extend the semi-discrete OT algorithm to approxi-
mate the one-to-one map between the inferred latent vectors
and the samples drawn from the prior distribution in our
settings. (iii) We provide strong empirical results in our ex-
periments to verify the effectiveness of the proposed strategy
to train deep latent variable models.

2. Related work
Variational inference. VAE [16] is a popular method

to learn generator network by simultaneously training a
tractable inference network to approximate the intractable
posterior distribution of the latent variables. In VAE, one
needs to design an inference model for the latent variables,
which is a non-trivial task in a generator network with com-
plex architecture. Our method does not rely on an extra
inference model to assist the training. It performs infer-
ence by Langevin sampling from the posterior distribution,
followed by an optimal transport correction.

Alternating back-propagation algorithm. The maxi-
mum likelihood learning of the generator network, including
its dynamic version, can be achieved by the alternating back-
propagation (ABP) algorithm [13, 39], without resorting to
an inference model. The ABP algorithm trains the generator
model by alternating the following two steps: (i) inference
step: inferring the latent variables by Langevin sampling
from the posterior distribution, and (ii) learning step: updat-
ing the model parameters based on the training data and the
inferred latent variables by gradient descent. Both steps com-
pute the gradients with the help of back-propagation. The
ABP algorithm has been successfully applied to saliency
detection [43], zero-shot learning [46], and disentangled
representation learning [41, 40], etc.

Optimal Transport. Optimal transport (OT) is used to
compute the distance between two measures and is able to
push forward the source distribution to the target distribu-
tion [38, 32]. Recently, OT has been widely used in the
generative models to help generate high quality samples.
For example, by replacing the original KL-divergence in the
GAN models [10] with the W1 distance, Arjovsky et al. [3]
proposed the WGAN model to achieve better convergence
and generate higher quality samples. Tolstikhin et al. [36]
proposed the Wasserstein variational auto-encoder that mini-
mizes the Wasserstein distance between the inference model
and the posterior distribution. Besides the Wasserstein dis-
tance, the optimal transport is also used to transport a simple
uniform distribution to the complex latent feature distribution
extracted by the autoencoder for image generation [1, 2].

3. Maximum likelihood learning of deep latent
variable model

Let I be a D-dimensional observed data example, such
as an image. Let z be the d-dimensional vector of contin-
uous latent variables. Generalizing from traditional factor
analysis model, the generator network assumes the observed
example I is generated from a latent vector z by a non-linear
transformation I = gθ(z) + ε, where gθ is a top-down con-
volutional neural network (sometime called deconvolutional
neural network) with parameters θ that consist of all train-
able weights and bias terms in the network, ε ∼ N (0, σ2ID)
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is the observation error, and z ∼ N (0, Id). Id and ID
are d-dimensional and D-dimensional identity matrices, re-
spectively. We assume d � D. The generator network is
essentially a non-linear latent variable model that defines the
joint distribution of (I, z),

pθ(I, z) = pθ(I|z)p(z), (1)

where we assume the prior distribution p(z) = N (0, Id) and
p(I|z) = N (gθ(z), σ

2ID). The standard deviation σ takes
an assumed value. Following the Bayes rule, we can easily
obtain the marginal distribution pθ(I) =

∫
pθ(I, z)dz, and

the posterior distribution pθ(z|I) = pθ(I, z)/pθ(I).
Given a set of training examples {Ii, i = 1, . . . , n} ∼

pdata(I), where pdata(I) is the unknown data distribution.
We can train pθ by maximizing the log-likelihood of the
training samples

L(θ) =
1

n

n∑
i=1

log pθ(Ii), (2)

which is equivalent to the minimization of KL(pdata||pθ)
when the number of training examples n is large enough [13].

The maximization of the log-likelihood function pre-
sented in Eq. (2) can be accomplished by gradient ascent
algorithm that iterates

θt+1 = θt + γt
1

n

n∑
i=1

∇θ log pθ(Ii), (3)

where γt is the learning rate depending on time t and the
gradient of the log probability is given by

∇θ log pθ(I) =
1

pθ(I)
∇θpθ(I)

=

∫
[∇θ log pθ(I, z)]

pθ(I, z)

pθ(I)
dz

= Epθ(z|I)[∇θ log pθ(I, z)].

(4)

To compute ∇θ log pθ(I) in Eq. (4), we need to estimate
∇θ log pθ(I, z). According to Eq. (1), the logarithm of the
join distribution is given by

log pθ(I, z) = − 1

2σ2
‖I− gθ(z)‖2 −

1

2
‖z‖2 + const, (5)

where the constant term is independent of z or θ, thus
∇θ log pθ(I, z) = 1

σ2 (I − gθ(z))∇θgθ(z), where ∇θgθ(z)
can be efficiently computed by back-propagation.

4. Short-run MCMC inference
4.1. Long-run Langevin dynamics

To learn the model parameter θ by using Eq. (3), the key is
to compute the intractable expectation term in Eq. (4), which

can be achieved by first drawing samples from pθ(z|I) and
then using the Monte Carlo sample average to approximate it.
Given a step size s > 0, and an initial value z0, Langevin dy-
namics [19, 45], which is a gradient-based MCMC method,
can produce samples from the posterior density pθ(z|I) by
recursively computing

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, (6)

where k indexes the time step of Langevin dynamics,
ξk ∼ N (0, Id) is a random noise diffusion. Also,
∇z log pθ(z|I) = 1

σ2 (I − gθ(z))∇zgθ(z) − z, where
∇zgθ(z) can be efficiently computed by back-propagation.

Let us use K to denote the number of Langevin steps.
When s→ 0 and K →∞, no matter what the initial distri-
bution of z0 is, zK will converge to the posterior distribution
pθ(z|I) and become a fair sample from pθ(z|I).

4.2. Short-run Langevin dynamics

It is not sensible or realistic to use a long-run MCMC to
train the model. Within each iteration, running a finite num-
ber of Langevin steps for inference toward pθ(z|I) appears
to be practical. Thus, a short-run K-step Langevin dynamics
is given by

z0 ∼ p0(z),

zk+1 = zk +
s2

2
∇z log pθ(z|I) + sξk, k = 1, ..,K.

(7)

The initial distribution p0 is assumed to be the Gaussian
distribution in this paper. Following [30], such a dynamics
can be treated as a conditional generator that transforms a
random noise z0 to the target distribution under the con-
dition I. And the transformation itself can also be treated
as a K-layer residual network, where each layer shares the
same parameters θ and has a noise injection. We use κθ to
denote the K-step MCMC transition kernel. The conditional
distribution of zK given I is

qθ(z
K |I) =

∫
p0(z0)κθ(z

K |z0, I)dz0, (8)

and the corresponding marginal distribution of zK is

qθ(z
K) =

∫
qθ(z

K |I)pdata(I)dI. (9)

If the MCMC converges, qθ(zK) should be close to the prior
distribution p(z), otherwise there is a gap between them.

Eq. (7) is also called the noise-initialized short-run
MCMC, where for each step of parameter update, the short-
run MCMC starts from the noise distribution z0 ∼ p0(z).
If the short-run MCMC is initialized by the inferred results
obtained in previous iteration, it is called the persistent short-
run MCMC.
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Despite the efficiency of the short-run MCMC inference
in Eq. (8), it might not converge to the true posterior dis-
tribution pθ(z|I). [30] treats the short-run MCMC as an
approximate inference model and optimizes the step size s
by variational inference, in which the step size s is optimized
via either a grid search or gradient descent, so that the short-
run MCMC qs(z|I) (here s is the learning parameter) can
best approximate the posterior distribution pθ(z|I).

5. MCMC inference with OT correction
In this paper, we propose to use optimal transport to cor-

rect the bias of the short-run inference results. Instead of min-
imizing the difference between the short-run inference model
and the true posterior, i.e., KL(qθ(z

K |I)|pθ(z|I)), we use OT
to minimize the transport cost between the marginal distribu-
tion qθ(zK) of the latent variables inferred by the short-run
Langevin dynamics and the prior distribution p0(z).

5.1. OT correction for biased short-run MCMC

To be specific, for learning a top-down latent variable
model I = gθ(z) that generates an observed image I from a
latent vector z, we iterate the following three steps. (i) Infer-
ence step: we first infer the latent vector for each observed
image Ii by a K-step short-run MCMC, i.e., ẑ ∼ pθ(zK |Ii),
and then we obtain a population {ẑi} of the inferred latent
vectors for all observed data {Ii}, where {ẑi} ∼ qθ(z

K);
(ii) Correction step: We use OT to move {ẑi} to the desired
prior distribution for closing the gap between them due to
non-convergent inference. The OT reshapes the biased popu-
lation to the prior distribution with a minimum moving cost.
With the more correct inferred latent vectors, the subsequent
parameter update can be more accurate; (iii) Learning step:
Given the observed images and their corresponding inferred
latent vectors, we update θ by following Eq. (3) and Eq. (4).
As the θ becomes increasingly well-trained, the inference
engine qθ(zK) becomes more accurate and the correction
made by OT also becomes smaller. An illustration of the
proposed strategy is presented in Fig. 1, where we also com-
pare our framework with the one using a traditional long-run
MCMC inference.

z

I

Long-Run
MCMC

p(z)

gθ(z)

z

I

ẑ

Short-Run
MCMC

Optimal

gθ(z)

p(z)

pθ(z
K )

Transport

Figure 1. Diagrams of two learning strategies for latent variable
models: (left) the long-run MCMC inference framework. (right) the
proposed framework using a short-run MCMC with OT correction.

In practise, we can use either the noise-initialized short-
run MCMC or the persistent short-run MCMC in the infer-
ence step. In our experiment we choose the latter one for the
purpose of quick convergence. As to the correction stage, we
learn the one-to-one OT map from {ẑi} to {zi}, which is a
population sampled from the prior Gaussian distribution and
of the same size as {ẑi}. Computing the optimal transport
at each iteration is time-consuming and unnecessary in prac-
tise. To make the whole pipeline more efficient, we actually
perform the correction step after every L iterations. After
we get the bijective OT map T (ẑi) = zj , instead of directly
updating the model through the paired data {(T (ẑi), Ii)},
we choose to correct ẑi by using a mixture of the OT result
and the old one to avoid unstable learning due to a sudden
change of ẑi, i.e.,

ẑi ← αT (ẑi) + (1− α)ẑi, (10)

where α ∈ [0, 1] is a hyperparameter that controls the per-
centage of the OT result used for correction. Then we get the
corrected paired data {(ẑi, Ii)}, which are used to update the
model parameter θ. Note that when α = 0, our model degen-
erates to the traditional ABP model [13]. If α is set to be 1,
we correct the short-run outputs totally with the OT results.
A moderate 0 < α < 1 is typically helpful to gradually pull
the marginal distribution qθ(zK) to the prior distribution
p(z) for ensuring a smooth correction. We summarize the
whole pipeline of our learning strategy in Alg. 1.

Algorithm 1 Short-run MCMC inference with OT correction
1: Input: (1) observed examples {Ii}, (2) number of skip

steps L, (3) number of Langevin steps K, (4) Langevin
step size s, (5) random samples {zj} from the prior
distribution N (0, Id), and (6) hyperparameter α.

2: Output: Model parameters θ.
3: k ← 1
4: repeat
5: # Inference
6: Infer the latent vectors {ẑi} from {Ii} by a K-step

short-run Langevin dynamics in Eq. (7). The short-
run MCMC can be initialized by random noise or the
previous result.

7: # Correction
8: if k%L == 0 then
9: Compute the approximate OT map T̂ from {ẑi} to

{zj} according to Alg. 2.
10: ẑi ← αT̂ (ẑi) + (1− α)ẑi
11: end if
12: # Learning
13: Update the model parameter θ by following Eq. (3)

and Eq. (4) with the paired data {(ẑi, Ii)}.
14: k ← k + 1
15: until Converge
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Algorithm 2 Optimal Transport
1: Input: source samples {ẑi}ni=1, target samples {zj}nj=1,

and a threshold ε.
2: Output: T̂
3: Initialize h = (0, 0, . . . , 0).
4: repeat
5: Compute Jj for j = 1, 2, . . . , n

6: Compute ∂E
∂hj

=
#Jj
n −

1
n

7: Update h according to the Adam algorithm with β1 =
0.9 and β2 = 0.5.

8: until ‖∇E‖ ≤ ε
9: Build the approximate OT map T̂ through Jj , j =

1, 2, . . . , n.

5.2. Optimal transport

Given the latent codes sampled from qθ(z
K), namely

{ẑi}ni=1, and the randomly generated samples {zj}nj=1 from
the prior N (0, Id), the one-to-one map from {ẑi} to {zj} is
computed through the optimal transport. Specifically, we set
the cost function to be the squared Euclidean distance cij =
‖ẑi−zj‖22 because it has a beautiful geometric meaning [37],
and then solve the following assignment problem:

min
π∈Π

n∑
i,j=1

πijcij (11)

where Π = {π|
∑n
j=1 πij = 1

n ,
∑n
i=1 πij = 1

n , πij ≥ 0}.
According to the linear programming theory, there will be
only one nonzero element in each row/column of π. Actually,
all of the nonzero elements should be equal to 1/n. Thus, we
can define the map from {ẑi} to {zj} like this: T : ẑi → zj
if πij 6= 0. When n is large, directly solving the above prob-
lem with Linear Programming will be problematic, since
the computational complexity is prohibitively high (O(n2.5)
according to [22]). Similarly, the classical Hungarian algo-
rithm [17] for the assignment problem cannot be used to
solve this problem due to the high computational complexity
O(n3). It is also impossible to solve the above problem with
the approximate OT solvers, e.g., the Sinkhorn algorithm [7],
since these solvers tend to give a dense transport plan, from
which it is impossible to recover the OT map. Moreover, the
approximate algorithms are not suitable for large scale prob-
lems with n > 20, 000. Thus, we turn to the dual problem
of Eq. (11). Here we extend the original dual formula for the
semi-discrete OT in [5, 11, 1] to the following minimization
problem in our discrete setting:

min
h
E(h) =

1

n

n∑
j=1

max
j
{〈ẑi, zj〉+ hj}−

1

n

n∑
j=1

hj . (12)

The above problem is convex as it is the maximum of
the summation of n hyperplanes. Thus, it can be solved

by the gradient descent algorithm. The gradient is com-
puted by ∂E

∂hj
=

#Jj
n −

1
n , where Jj = {i|〈ẑi, zj〉 + hj ≥

〈ẑi, zk〉+ hk ∀ k ∈ [n]} and #Jj is the number of elements
in Jj . Assume h∗ is an optimal solution of E(h), then h =
h∗ + (c, c, . . . , c)T is also an optimal solution. To omit the
ambulation, we define∇E(h) = ∇E(h)−mean(∇E(h)).
With the gradient information, the energy E(h) can be mini-
mized by the Adam gradient descent algorithm [15].

Since Eq. (12) is the dual of the assignment problem,
with the optimal solution h∗, it is easy to reconstruct the
one-to-one OT map from {ẑi} to {zj} by T : ẑi → zj , j =
arg maxk〈ẑi, zk〉+ h∗k ∀ k ∈ [n]. During the optimization
process, we stop when the norm of the gradient ∇E(h) is
less than ε. Ideally, if ε = 0, the map T will be injective and
surjective, and each Jj only includes one element, namely
the corresponding i. In that case, the OT map T is well
defined. In reality, we usually set ε > 0, therefore T will
be neither injective nor surjective. In such a situation, for
some zjs, there may be one or more corresponding ẑis; and
for some other zjs, the corresponding ẑis may not exist.
To omit the ambiguity and reconstruct the one-to-one map,
we need to handle the set Jj that will be empty or include
one or more elements. The approximate OT map T̂ is thus
given by: (i) if there is only one element in Jj , namely
i, then T̂ (ẑi) = zj ; (ii) when Jj includes more than one
elements, we randomly select i ∈ Jj and abandon the others,
then define T̂ (ẑi) = zj ; (iii) the abandoned ẑis and the
zjs corresponding to the empty Jjs are removed from the
domain and range of T̂ , respectively. In such a way, we build
a new injective and surjective map T̂ that approximates the
OT map T well.

Note that in our OT algorithm, the prior distribution is
not limited to the Gaussian distribution. We can actually
choose any prior distribution as long as it is easy to sample
from. Additionally, the computational complexity to solve
the nonsmooth dual problem in Eq. (12) is O(n2/

√
ε) [27].

Under the background of training the complex neural net-
works with a large number of parameters, the time used to
optimize the OT problem is negligible. Finally, the number
of the removed samples from T̂ should not be larger than nε.
In our experiments, we usually set ε = 0.05. With such a
small ε, we can get a good approximation of the OT map.

6. Experiments

In the experiments, we test the proposed model in terms
of whether it can (i) successfully correct the marginal distri-
bution qθ(zK) of the latent vectors inferred by the short-run
Langevin dynamics, (ii) learn an expressive generator that
synthesizes visually realistic images from the prior distribu-
tion, and (iii) successfully perform anomaly detection. To
show the performance of our method, we experiment on
MNIST [20], SVHN [28] and CelebA [44] datasets. Details
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Figure 2. Visualization of the latent codes sampled from the marginal distribution qθ(zK) at different iterations and the prior distribution
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Figure 3. The output marginal distributions of z by different models
trained on images from classes “0” and class “1” of MNIST dataset.

about the design of the generator architecture, the choices
of the model hyperparameters and the optimization method
for each dataset can be found in the supplementary material.
Moreover, to investigate the influence of different hyper-
parameters, we mainly use the MNIST dataset due to its
simplicity and representativeness. To quantify the perfor-
mance of the model, we adopt the mean squared error (MSE)
and the FID score [14] to measure the quality of the recon-
structed and generated images.

6.1. Latent space analysis

To verify that the proposed method does correct the short-
run marginal distribution qθ(zK) of the latent variables, we
pick up the classes “0” and “1” of the MNIST dataset, from
which we learn our model with the latent space dimension
set to be 2 for better visualization. We first show the evolu-
tion of qθ(zK) at different iterations of our model in Fig. 2,
where the iteration indicates the number of OT corrections.
From Fig. 2, we can see that qθ(zK) gradually moves to-
ward the prior distribution due to the OT correction, and
finally matches it. Fig. 3 also shows a comparison of the
latent vectors inferred by the VAE model [16], the ABP
model [13] and our model, respectively. The distributions of
latent vectors inferred by the VAE and the ABP models are
far from the prior (Gaussian) distribution, while the marginal
distribution qθ(zK) of our model looks much closer to it.

6.2. Image modeling

We evaluate the quality of both the reconstructed and
generated images. With a well-learned model, the marginal
distribution of qθ(zK) should match the prior distribution
well. In such a case, the generator will be a probability
transformation from the prior Gaussian distribution to the

image distribution, and we can synthesize a high quality
image by I = gθ(z) with a latent vector z sampled from the
prior distribution. Additionally, the model can be useful for
reconstruction. In the following, we compare our model to
the VAE [16], its variants 2sVAE [8] and RAE [9]. We also
compare with the ABP model [13] and its variant SRI [30],
whose generator has multiple layers of latent variables. The
last model we compare is the LEBM model [31], which
uses an energy-based short-run MCMC to infer the latent
variables of each observed image.

In Fig. 4, we show both the reconstructed and the gener-

Figure 4. The reconstructed (the first column) and the generated im-
ages (the second column) of MNIST [20] (the first row), SVHN [28]
(the second row) and CelebA [44] (the third row) datasets.

6



Models VAE 2sVAE RAE ABP SRI SRI (L=5) LEBM Ours

MNIST MSE 0.023 0.026 0.015 - 0.019 0.015 - 0.0008
FID 19.21 18.81 23.92 - - - - 14.28

SVHN MSE 0.019 0.019 0.014 - 0.018 0.011 0.008 0.002
FID 46.78 42.81 40.02 49.71 44.86 35.23 29.44 19.48

CelebA MSE 0.021 0.021 0.018 - 0.020 0.015 0.013 0.010
FID 65.75 49.70 40.95 51.50 61.03 47.95 37.87 29.75

Table 1. The comparison results on different datasets. The MSE and FID (smaller is better) are used to test the quality of the reconstructed
and generated images, respectively.

Heldout Digit 1 4 5 7 9

VAE 0.063 0.337 0.325 0.148 0.104
MEG 0.281± 0.035 0.401± 0.061 0.402± 0.062 0.290± 0.040 0.342± 0.034

Bigan-σ 0.287± 0.023 0.443± 0.029 0.514± 0.029 0.347± 0.017 0.307± 0.028
LEBM 0.336± 0.008 0.630± 0.017 0.619± 0.013 0.463± 0.009 0.413± 0.010
ABP 0.095± 0.028 0.138± 0.037 0.147±0.026 0.138± 0.021 0.102±0.033
Ours 0.353±0.021 0.770± 0.024 0.726±0.030 0.550±0.013 0.555±0.023

Table 2. AUPRC scores (larger is better) for unsupervised anomaly detection on the MNIST dataset. Numbers are taken from [31] and
results for our model are averaged over 10 experiments for variance.

ated images with the latent vectors sampled from the given
prior distribution. It is obvious that the generated images
shown in the second column are realistic and comparable
to the real ones in the training datasets. In Table 1, we use
the MSE to test the quality of the reconstructed images and
the FID score to quantify the quality the generated images.
From the table we can find that the proposed method outper-
forms the other methods in the tasks of reconstruction and
generation.

6.3. Anomaly detection

Anomaly detection is another task that can help evaluate
the proposed model. With a well-learned model from the
normal data, we can detect the anomalous data by firstly sam-
pling the latent code z of the given testing image I from the
conditional distribution qθ(zK |I) by the short-run Langevin
dynamics, and then computing the logarithm of the joint
probability log pθ(I, z) in Eq. (5). Based on our theory, the
joint probability should be high for the normal images and
low for the anomalous ones.

In the following experiments, we treat each class in the
MNIST dataset as an anomalous class and leave the others
as normal. We follow the protocols as in [18, 42, 30] and
train the model only with the normal data. Then the model
is tested with both the normal and anomalous data. To eval-
uate the performance, we use log pθ(I, z) as our decision
function to compute the area under the precision-recall curve
(AUPRC), just like [31] does. In the test stage, we run each
experiment 10 times to get the mean and variance. In Ta-
ble 2, we compare our method with the related models in
this task, including the VAE [16], MEG [18], BiGAN-σ [42],

LEBM [31] and ABP model [13], which can be treated as a
special case of our model without the OT calibration. From
the table, we can find that the proposed method can get much
better results than those of other methods.

6.4. Influence of the number of latent dimensions

Here we show the influence of the number of dimensions
of the latent space under the same architecture. We use the
SVHN dataset, and set different numbers of dimensions of
the latent space, e.g., 20, 40 and 64, respectively. As shown
in Table 3, with more latent dimensions, we can obtain much
better results in terms of both reconstruction and generation.

# Dimension MSE FID

20 0.011 36.32
40 0.008 24.73
64 0.002 19.48

Table 3. The performances of the proposed method on SVHN
dataset with the same architecture but different numbers of latent
dimensions. (Smaller is better for MSE and FID.)

6.5. Ablation study

Now we explore the performances of the proposed model
under different values of the parameter α introduced in
Eq. (10), different step sizes of the Langevin dynamics (the
s of Eq. (7)), different numbers of Langevin steps (K in
Eq. (7)) and different numbers of iterations for the learning
step that seeks to maximize the joint probability in Eq. (5)
using the paired data {(ẑi, Ii)}.
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Figure 5. The influences of α on the OT cost, MSE loss and FID over different iterations.

The influence of α. Firstly, we investigate the influ-
ence of α in Eq. (10), which is shown in Fig. 5. In the left
subfigure, we show the OT cost from {ẑi} to {zj}, which
serves as a distance between the qθ(zK) through the short-
run Langevin dynamics and the prior distribution p(z). It
is obvious that a larger α can pull the marginal distribution
qθ(z

K) more quickly toward the prior distribution. The sub-
figure in the middle suggests that to get a smaller MSE loss,
it is better to choose a smaller α. According to the right
subfigure, we get the best FID with a medium α, namely
α = 0.5. Thus, to balance the OT cost, MSE loss and the
FID, we set α = 0.5 in the following experiments. From
the curves, we also find that as the algorithm progresses, the
marginal distribution qθ(zK) gets increasingly close to the
prior distribution p0(z), and the qualities of both the recon-
structed images and the generated images also increase.

s=3e-3 s=1.5e-2 s=3e-2 s=6e-2

MSE Before 0.007 0.008 0.011 0.027
After 0.018 0.013 0.013 0.027

FID Before 44.51 28.10 22.70 109.97
After 40.61 26.86 21.89 87.77

Table 4. The influence of the step size of the Langevin dynamics.

The influence of the Langevin step size. Next, we show
the performances of our model with different Langevin step
sizes (s in Eq. (7)) in Table 4, where “Before” means that we
use the model before the OT correction, and “After” means
we use the trained model after the OT correction. With a
small s, the MSE loss is indeed very small, but the FID is
relatively large, meaning that the quality of the generated
images is not very good. When s is large, e.g., s = 6e−2 in
the last column, both the MSE loss and the FID are large,
which means that we cannot even get high quality recon-
structed images. In this situation, the model actually doesn’t
converge very well. Only with the appropriate Langevin
step size (in this experiment, s = 3e−2), we can obtain a
good balance between the MSE and the FID for satisfying
reconstruction and generation results.

The influence of the number of Langevin steps. The
number of Langevin steps K in Eq. (7) is another key factor
that influences the performance of the proposed method. The-

oretically, larger K will give us a more convergent MCMC
inference, so as to help us get more accurate latent variables.
To prove this point, we setK = 30, 50, 100 respectively, and
keep the other parameters fixed. The results are shown in
Table 5. Indeed, a larger K gives us a better result. However,
a large K will also increase the running time for the whole
pipeline linearly. Thus, to get a good balance between the
running time and the performance, we need to choose the
suitable K for different datasets.

K=30 K=50 K=100

MSE 0.014 0.011 0.007
FID 22.32 18.57 15.43

Table 5. The influence of the number of Langevin steps K.

The influence of the number of iterations inside the
learning step. In Alg. 1, we actually run several iterations,
denoted by L2, of gradient ascent inside the learning step to
maximize the joint probability in Eq. (5) by the paired data
{(ẑi, Ii)}. The results are shown in Table 6. From the table
we can find that by increasing L2, we can get much better
performances for image reconstruction and generation.

L2=1 L2=2 L2=3

MSE 0.013 0.010 0.008
FID 21.89 17.32 14.28

Table 6. The influence of the number of learning iterations.

7. Conclusion
In this paper, we propose to use the OT theory to correct

the bias of the short-run MCMC-based inference in training
the deep latent variable models. Specifically, we correct the
marginal distribution of the latent variables of the short-run
Langevin dynamics through the OT map between this dis-
tribution and the prior distribution step by step. In such a
way, the distribution of the inferred latent vectors will finally
converge to the prior distribution, thus improving the accu-
racy of the subsequent parameter learning. Experimental
results show that the proposed training method performs
better than the ABP and VAE models on the tasks like image
reconstruction, image generation and anomaly detection.
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Appendix: Experimental Details

A. Datasets
In the experiments, we mainly use the MNIST datatset [20] (28× 28× 1), SVHN dataset [28] (32× 32× 3) and CelebA

dataset [44] (64 × 64 × 3). For the first two datasets, we use all of the samples in the training set, namely 60,000 for the
MNIST dataset and 73,257 for the SVHN dataset. For the CelebA dataset, we randomly select 60,000 images for the purpose
of quick convergence. All of the training images are resized and scaled to the range of [−1, 1].

B. Model architectures
The architectures of the models are presented in Tab. 7, where the numbers of latent dimensions are set to be 30, 64, 64 for

the MNIST dataset, SVHN dataset and CelebA dataset, respectively.

Model layer number of outputs kernel size stride padding output padding BN activation

MNIST

Input z 30 - - - - - -
Linear 1024 - - - - yes ReLU
Linear 7*7*128 - - - - Yes ReLU
convT 14*14*64 2*2 2 - - Yes ReLU
convT 28*28*3 2*2 2 - - - Tanh

SVHN

Input z 64 - - - - - -
convT 2*2*64*8 - - - - -
convT 4*4*64*4 5*5 2 2 1 Yes ReLU
convT 8*8*64*2 5*5 2 2 1 Yes ReLU
convT 16*16*64 5*5 2 2 1 Yes ReLU
convT 32*32*3 5*5 2 2 1 - Tanh

CelebA

Input z 64 - - - - - -
convT 4*4*128*8 - - - - - -
convT 8*8*128*4 5*5 2 2 1 Yes ReLU
convT 16*16*128*2 5*5 2 2 1 Yes ReLU
convT 32*32*128 5*5 2 2 1 Yes ReLU
convT 64*64*3 5*5 2 2 1 - Tanh

Table 7. The architectures of the generators for different datasets.

C. Optimization
The parameters for the generators are initialized with Xavier normal [47] and then optimized with the Adam optimizer [15]

with β1 = 0.5 and β2 = 0.99. For all of the experiments, we set the batch size to be 2,000. In Alg. 1 of the paper, both L and
K are set to be 50. The hyperparameter α is set to be 0.5 for the MNIST dataset, and 0.3 for the SVHN and CelebA datasets.
The step sizes s for MNIST, SVHN and CelebA datasets are set to be 0.3, 3.0, 3.0, respectively. We also set σ = 0.3 for all of
the models.

D. Computational cost
Due to the involvement of the short-run MCMC and the optimal transport, it is necessary to consider the running time of the

whole pipeline. Here we take the SVHN dataset which includes 73,257 images with the size 32× 32× 3 as an example. We
train our model on two NVIDIA TitanX GPUs. For each iteration, the inference step with K = 30 takes about 124 minutes,
the correction step by optimal transport takes about 10 minutes and the learning step with L2 = 2 takes 5 minutes. Generally,
we need to run 10 ∼ 15 iterations for the model, which will consume about one day.
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