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Abstract

1We propose the NeRF-LEBM, a likelihood-
based top-down 3D-aware 2D image generative
model that incorporates 3D representation via
Neural Radiance Fields (NeRF) and 2D imaging
process via differentiable volume rendering. The
model represents an image as a rendering process
from 3D object to 2D image and is conditioned on
some latent variables that account for object char-
acteristics and are assumed to follow informative
trainable energy-based prior models. We propose
two likelihood-based learning frameworks to train
the NeRF-LEBM: (i) maximum likelihood esti-
mation with Markov chain Monte Carlo-based
inference and (ii) variational inference with the
reparameterization trick. We study our models
in the scenarios with both known and unknown
camera poses. Experiments on several benchmark
datasets demonstrate that the NeRF-LEBM can
infer 3D object structures from 2D images, gener-
ate 2D images with novel views and objects, learn
from incomplete 2D images, and learn from 2D
images with known or unknown camera poses.

1 Introduction

1.1 Motivation

Towards the goal of 3D-aware image synthesis, existing
methods generate 3D representations of objects either in a
voxel-based format [55] or via intermediate 3D features [1],
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and then use the differentiable rendering operation to render
the generated 3D object into 2D views. However, the voxel-
based 3D representation is discrete and memory-inefficient
so that the methods are limited to generating low-quality
and low-resolution images of objects. Notably, the Neu-
ral Radiance Field (NeRF) [25] has become a new type
of 3D representation of objects and shown impressive re-
sults for new view synthesis. It represents a continuous
3D scene or object by a mapping function parameterized
by a neural net, which takes as input a 3D location and a
viewing direction and outputs the values of color and den-
sity. The visualization of the 3D object can be achieved
through generating different views of images by querying
the mapping function at each specific 3D location and view-
ing direction, followed by volume rendering operation [17]
to produce image pixel intensities. In general, each NeRF
function can only represent one single object and need to
be trained from multiple views of images of that object. By
generalizing the original NeRF function to a conditional
version that involves latent variables that account for the
appearance and shape of the object, GRAF [36] builds a 2D
image generator based on the conditional NeRF and trains
the generator for 3D-aware controllable image synthesis
via adversarial learning. The NeRF-VAE [21] proposes to
train the NeRF-based generator via variational inference,
where the bottom-up inference network allows the inference
of 3D structures of objects in unseen testing images. Both
GRAF and NeRF-VAE assumes the object-specific latent
variables to follow simple and non-informative Gaussian
distributions. As a likelihood-based model, the NeRF-VAE
can only handle training images with known camera poses
because of the difficulty of inference of the unknown camera
pose for each observed image. The GRAF, which is a non-
likelihood-based generative model, can easily learn from
images with unknown camera poses because its adversarial
learning scheme does not need to deal with inference. Re-
cently, we have witnessed the rapid advance of adversarial
NeRF-based generative models, however, the progress in
developing likelihood-based NeRF-based generative models
has been lagging behind. Conceptually, likelihood-based
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generative models have many advantages, e.g., stable learn-
ing process without a mode collapse issue, capability of
inferring latent variables from training and testing examples,
and capability of learning from incomplete data via unsu-
pervised learning. Thus, this paper aims at pushing forward
the progress of likelihood-based generative radiance �eld.

To be speci�c, by leveraging the NeRF-based image genera-
tor and the latent space energy-based models (LEBMs) [32],
this paper proposes the NeRF-LEBM, a novel likelihood-
based 3D-aware generative model for 2D images. It builds
energy-based models (EBMs) on the latent space of the
NeRF-based generator [36]. The latent space EBMs are
treated as informative prior distributions. We can follow the
empirical Bayes, and train the EBM priors and the NeRF-
based generator simultaneously from observed data. The
trainable EBM priors over latent variables (appearance and
shape of the object) allow sampling novel objects from the
model and rendering images with arbitrary viewpoints, as
well as improve the capacity of the latent spaces and the
expressivity of the NeRF-based generator. Suppose there is
a set of 2D training images presenting multiple objects with
various appearance, shapes and viewpoints. We �rst study
the scenario of [21], in which the viewpoint of each image is
known. We propose to train the models by maximum likeli-
hood estimation (MLE) with Markov chain Monte Carlo [3]
(MCMC)-based inference, in which no extra assisting net-
work is required. At each iteration, the learning algorithm
runs MCMC sampling of the latent variables from the EBM
priors and the posteriors. The update of the EBM priors is
based on the samples from the prior and the posterior dis-
tributions, while the update of the generator is based on the
samples from the posteriors and the observed data. Further-
more, for ef�cient training and inference, we also propose
to use the amortized inference to train the NeRF-LEBM as
an alternative. Lastly, we do not assume the camera pose
of each image is given and treat it as latent variables that
follows a uniform prior distribution. We propose to use
the von Mises-Fisher (vMF) [7] distribution to approximate
the posterior of the camera pose in our amortized infer-
ence framework. Our experiments show that the proposed
likelihood-based generative model can not only synthesize
images with new objects and arbitrary viewpoints but also
learn meaningful disentangled representation of images in
scenarios of both known and unknown camera poses. The
model can even learn from incomplete 2D training images
for control generation and 3D aware inference. Our paper
makes the following contributions:

1. We propose a novel NeRF-based 2D generative model,
with a trainable energy-based latent space, for 3D-
aware image synthesis and disentangled representation.

2. We propose to train the model by MLE with MCMC-
based inference, which does not rely on separate net-
works and is more principled and statistically rigours
than adversarial learning and variational learning.

3. We propose to train the model via amortized inference
by recruiting inference networks. Due to the use of
EBM priors, our algorithm is different from the learn-
ing framework of the NeRF-VAE.

4. We are the �rst to solve the problem of inferring un-
known camera poses in variational inference frame-
work through a novel posterior and prior setting.

5. We conduct extensive experiments to test the ef�ciency,
effectiveness and performance of the proposed NeRF-
LFBM model and learning algorithms.

1.2 Related work

3D-aware image synthesis Prior works study control-
lable image generation by adopting 3D data as supervi-
sion [38, 55] or 3D information as input [1, 31]. Several
works [18, 15, 26, 22] build discriminative mapping func-
tions from 2D images to 3D shapes, followed by differen-
tiable rendering to project the 3D generated objects back
to images for computing reconstruction errors on image
domain. Unlike the aforementioned reconstruction-based
frameworks, several recent works, such as GRAF [36], GI-
RAFFE [28], pi-GAN [5], and NeRF-VAE [21], build 2D
generative models with NeRF function and differentiable
rendering and assume unobserved object-speci�c variables
to follow known Gaussian prior distributions. They are
trained by adversarial learning [12] or variational infer-
ence [20]. Our model is also a NeRF-based generative
model, but assumes latent object-speci�c variables to follow
informative prior distributions parameterized by energy-
based models [41]. We propose to train NeRF-based gen-
erator and EBM priors simultaneously by likelihood-based
learning with either MCMC or amortized inference.

Energy-based models Recently, with the striking expres-
sive power of modern deep networks, deep data space
EBMs [41] have shown impressive performance in model-
ing distributions of different types of high-dimensional data,
e.g., images [29, 53, 11, 45, 54, 48], videos [46, 47], 3D
volumetric shapes [43, 44], and unordered point clouds [42].
Besides, deep latent space EBMs [32], which stand on gen-
erator networks and serve as prior distributions of the latent
variables, have proven to be effective in learning expressive
latent spaces for text [33, 50], image [32], trajectory gener-
ation [34], and saliency prediction [52]. In our paper, we
build EBMs on the latent spaces of a NeRF-based genera-
tor to serve as prior distributions of object appearance and
shape for camera pose-conditioned image generation.

MCMC inference Our model is also related to the theme
of training deep latent variable models with MCMC infer-
ence [13, 39, 56, 40, 51, 30, 2, 52, 49]. Different from the
above works, our paper is the �rst to study the MCMC
inference in a NeRF-based generator with two EBM priors.
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2 Background

2.1 Neural Radiance Field

A continuous scene can be represented by a Neural Radiance
Field (NeRF) [25], which is a mapping functionf � whose
input is a 3D locationx 2 R3 and a 3D unit vector as
viewing directiond 2 R3, and whose output is an RGB
color valuec 2 R3 and a volume density� . Formally,
f � : (x; d) ! (c; � ), wheref � is a neural network with
parameters� . Given a �xed camera pose, to render a 2D
image from the NeRF representationf � , we can follow the
classical volume rendering method [17] to calculate the
color of each pixelv 2 R2 in the 2D image. The color
of the pixel is determined by the color and volume density
values of all points along the camera rayr that goes through
that pixelv. In practice, we can follow [25] and sampleM
pointsf xr

i gM
i =1 from the near to far bounds along the camera

ray r and obtain a set of corresponding colors and densities
f (cr

i ; � r
i )gM

i =1 by f � , and then we compute the colorC(r )
for the camera rayr by

C(r ) =
MX

i =1

T r
i (1 � exp(� � r

i � r
i ))cr

i ; (1)

where� r
i = jjxr

i +1 � xr
i jj2 is the distance between adjacent

sample points, andT r
i = exp( �

P i � 1
j =1 � r

j � r
j ) is the accu-

mulated transmittance along the ray from the 1st point to
thei -th point, i.e., the probability that the ray travels from
xr

1 to xr
i without being blocked. To render the whole image

I , we need to compute the color for the ray that corresponds
to each pixelv in the image. Letr (v) be the camera ray cor-
responding to the pixelv, and the rendered image is given
by I (v) = C(r (v)) ; v 2 D , whereD is the image domain.

2.2 Conditional Neural Radiance Field

The original NeRF functionf � is a 3D representation of a
single scene or object. To generalize the NeRF to represent
different scenes or objects, [36] proposes the conditional
NeRF function

g� : (x; d; zs; za) ! (c; � ); (2)

which is conditioned on object-speci�c variables,za andzs,
corresponding to object appearance and shape respectively.
It can be further decomposed into (i)g1

� 1
: (x; zs) ! h, (ii)

g2
� 2

: (h; d; za) ! c, and (iii) g3
� 3

: h ! � to show the
dependency among the input variables in the design ofg(� ).

3 Proposed framework

3.1 NeRF-based 2D generator with EBM priors

We are interested in learning a 3D-aware generative model
of 2D images, with the purposes of controllable image syn-
thesis and disentangled image representation. We build a

top-down 2D image generator based on a conditional NeRF
structure for the intrinsic 3D representation of the object
in an image. Letza andzs be the latent variables that de-
�ne the shape and the appearance of an object, respectively.
za andzs are assumed to be independent. They together
specify an object. Let� be the camera pose. The generator
G� consists of an object-conditioned NeRF functiong� as
shown in Eq. (2) and a differentiable rendering function as
shown in Eq. (1).� are trainable parameters of the generator.
Given an object speci�ed by(za ; zs), the generator takes
the camera pose� as input and outputs an image by using
the NeRFg� to render an image from the pose� with the
render operation in Eq. (1). Given a dataset of 2D images
of different objects captured from different viewing angles
(i.e., different camera pose), in which the camera pose of
each image is provided. We assume each image is gener-
ated by following the generative process de�ned byG� and
each of the latent variables(za ; zs) is assumed to follow
an informative prior distribution that is de�ned by a train-
able energy-based model (EBM). Speci�cally, the proposed
3D-aware image-based generative model is given by the
following deep latent variable model

I = G� (za ; zs; � ) + �;

� � N (0; � 2
� I );

za � p� a (za);

zs � p� s (zs);

(3)

where� is the observation residual following a Gaussian
distributionN (0; � 2

� I ) with a known standard deviation� � ,
andI denotes the identity matrix. Bothp� a (za) andp� s (zs)
are modeled by EBMs

p� a (za) =
1

Z (� a)
exp[� U� a (za)]q0(za); (4)

p� s (zs) =
1

Z (� s)
exp[� U� s (zs)]q0(zs); (5)

which are in the form of exponential tilting of a Gaussian
reference distributionq0 � N (0; � 2I ). (Note thatq0 could
be a uniform reference distribution.)U� a (za) andU� s (zs)
are called energy functions, both of which are parameterized
by multilayer perceptrons (MLPs) with trainable parameters
� a and� s, respectively. The energy function takes the cor-
responding latent variables as input and outputs a scalar as
energy. Besides,Z (� a) =

R
exp[� U� a (za)]q0(za)dza and

Z (� s) =
R

exp[� U� s (zs)]q0(zs)dzs are intractable nor-
malizing constants. Althoughq0(za) andq0(zs) are Gaus-
sian distributions,p� a (za) andp� z (xs) are non-Gaussian
priors, where� a and� s are learned from the data together
with the parameters� of the generatorG� .

3.2 Learning with MCMC-based inference

For convenience of notation, let� = ( �; � a ; � s) and
� = ( � a ; � s). Given a set of 2D images with known camera
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poses, i.e.,f (I i ; � i ); i = 1 ; :::; ng, we can train� by maxi-
mizing the observed-data log-likelihood function de�ned as

L(� ) =
1
n

nX

i =1

logp� (I i j� i )

=
1
n

nX

i =1

log
� Z

p� (za
i ; zs

i )p� (I i jza
i ; zs

i ; � i )dza
i dzs

i

�

=
1
n

nX

i =1

log
� Z

p� a (za
i )p� s (zs

i )p� (I i jza
i ; zs

i ; � i )dza
i dzs

i

�
;

wherep� (za ; zs) = p� a (za)p� s (zs) becauseza andzs are
statistically independent, and the latent variables are inte-
grated out in the complete-data log-likelihood. According to
the Law of Large Number, maximizing the likelihoodL(� )
is approximately equivalent to minimizing the Kullback-
Leibler (KL) divergence between modelp� (I j� ) and data
distributionpdata(I j� ) if the numbern of training examples
is very large. The gradient ofL (� ) is calculated based on

r � logp� (I j� ) = Ep� (za ;zs j I ;� ) [r � logp� (I ; za ; zs j� )]

= Ep� (za ;zs j I ;� ) [r � logp� a (za) + r � logp� s (zs)

+ r � logp� (I jza ; zs; � )]; (6)

which can be further decomposed into three parts, i.e., the
gradients for the EBM prior of object appearance� a

Ep� (za ;zs j I ;� ) [r � logp� a (za)] (7)

= Ep� a (za ) [r � a U� a (za)] � Ep� (za j I ;� ) [r � a U� a (za)] ;

the gradients for the EBM prior of object shape� s

Ep� (za ;zs j I ;� ) [r � logp� s (zs)] (8)

= Ep� s (zs ) [r � s U� s (zs)] � Ep� (zs j I ;� ) [r � s U� s (zs)] ;

as well as the gradients for the NeRF-based generator�

Ep� (za ;zs j I ;� ) [r � logp� (I jza ; zs; � )] (9)

= Ep� (za ;zs j I ;� )
�
r � G� (za ; zs; � )( I � G� (za ; zs; � ))=� 2

�

�
:

Since the expectations in Eq. (7), Eq. (8), and Eq. (9) are
analytically intractable, Langevin dynamics [27], which is
a gradient-based MCMC sampling method, is employed to
draw samples from the prior distributions (i.e.,p� a (za) and
p� s (zs)) and the posterior distribution (i.e.,p� (za ; zs jI ; � )),
and then Monte Carlo averages are computed to estimate
the expectation terms. As shown in Eq. (7) and Eq. (8), the
update of the EBM prior model� a (or � s) is based on the
difference betweenza (or zs) sampled from the prior distri-
butionp� s (za) (or p� s (zs)) andza (or zs) inferred from the
posterior distributionp� (za jI ; � ) (or p� (zs jI ; � )). Accord-
ing to Eq.(9), the update of the generator� relies onza and
zs inferred from the posterior distributionp� (za ; zs jI ; � ).
To sample from the prior distributionsp� a (za) andp� s (zs)
by Langevin dynamics, we updateza andzs by

za
t +1 = za

t + � r za logp� a (za
t ) +

p
2� ea

t ; (10)

zs
t +1 = zs

t + � r zs logp� s (zs
t ) +

p
2� es

t ; (11)

wheret indexes the time step,� is the Langevin step size,
andea

t andes
t are independent Gaussian noises that help the

MCMC chains to escape from local modes during sampling.
The gradients in Eq. (10) and Eq. (11) are given by

r za logp� a (za) = �r za U� a (za) � za=� 2; (12)

r zs logp� s (zs) = �r zs U� s (zs) � zs=� 2; (13)

wherer za U� a (za) and r zs U� s (zs) are ef�ciently com-
puted by back-propagation.

For each observed(I ; � ), we can sample from the pos-
terior p� (za ; zs jI ; � ) by alternately running Langevin dy-
namics: we �x zs and sampleza from p� (za jzs; I ; � ) /
p� (I ; za jzs; � ), and then �x za and samplezs from
p� (zs jza ; I ; � ) / p� (I ; zs jza ; � ). The Langevin sampling
step follows

za
t +1 = za

t + � r za logp� (I ; za
t jzs

t ; � ) +
p

2� ea
t ; (14)

zs
t +1 = zs

t + � r zs logp� (I ; zs
t jza

t ; � ) +
p

2� es
t : (15)

The key steps in Eq. (14) and Eq. (15) are to compute the
gradients of

logp� (I ; za jzs; � ) = log[ p� a (za)p� (I jza ; zs; � )] = Ca

� jj I � G� (za ; zs; � )jj2=2� 2
� � U� a (za) � jj za jj2=2� 2;

logp� (I ; zs jza ; � ) = log[ p� s (zs)p� (I jzs; za ; � )] = Cs

� jj I � G� (za ; zs; � )jj2=2� 2
� � U� s (zs) � jj zs jj2=2� 2;

whereCa andCs are constants independent ofza , zs and� .
After suf�cient alternating Langevin steps, the updatedza

andzs follow the joint posteriorp� (za ; zs jI ; � ), andza and
zs follow p� (za jI ; � ) andp� (zs jI ; � ), respectively.

Let za�
i andzs�

i be the samples drawn from the EBM priors
by Langevin dynamics in Eqs. (10) and (11). Letza+

i and
zs+

i be the inferred latent variables of the observation(I i ; � i )
by Langevin dynamics in Eqs. (14) and (15). The gradients
of the log-likelihoodL over� a , � s, and� are estimated by

r � a L =
1
n

nX

i =1

�
r � a U� a (za�

i )
�

�
1
n

nX

i =1

�
r � a U� a (za+

i )
�

;

r � s L =
1
n

nX

i =1

�
r � s U� s (zs�

i )
�

�
1
n

nX

i =1

�
r � s U� s (zs+

i )
�

;

r � L =
1
n

nX

i =1

�
r � G� (za+

i ; zs+
i ; � i )

I i � G� (za+
i ; zs+

i ; � i )
� 2

�

�
:

The learning algorithm of the NeRF-LEBM with MCMC
inference can be summarized in Algorithm 1.

3.3 Learning with amortized inference

Even though both prior and posterior sampling require
Langevin dynamics. Prior sampling is more affordable
than posterior sampling because the network structure of
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Algorithm 1 Learning NeRF-LEBM with MCMC inference
Input : (1) Images and viewpointsf (I i ; � i )gn

i =1 ; (2) Num-
bers of Langevin steps for priors and posteriorf K � ; K + g;
(3) Langevin step sizes for priors and posteriorf � � ; � + g; (4)
Learning rates for priors and generatorf � � ; � � g.
Output : (1) � for generator; (2)(� a ; � s) for EBM priors;
(3) Latent variablesf (za

i ; zs
i )gn

i =1 .
1: Randomly initialize� , � a , � s, andf (za

i ; zs
i )gn

i =1 .
2: repeat
3: For each(I i ; � i ), sample the prior of object appear-

anceza�
i � p� a (za) and the prior of object shape

zs�
i � p� s (zs) usingK � steps of Langevin dynam-

ics with a step size� � , which follows Eq. (10) and
Eq. (11), respectively.

4: For each(I i ; � i ), run K + Langevin steps with
a step size� + , to alternatively sampleza

i from
p� (za

i jzs
i ; I i ; � i ), while �xing zs

i ; and samplezs
i from

p� (zs
i jza

i ; I i ; � i ), while �xing za
i .

5: � a  � a + � � r � a L.
6: � s  � s + � � r � s L.
7: �  � + � � r � L.
8: until converge

U� a or U� s is much smaller than that of the NeRF-based
generatorG� and the posterior sampling need to perform
back-propagation onG� , which is time-consuming. In this
section, we propose to train the NeRF-LEBM by adopt-
ing amortized inference, in which the posterior distribu-
tions,p� (za jI ; � ) andp� (zs jI ; � ), are approximated by sep-
arate bottom-up inference networks with reparameteriza-
tion trick, q� a (za jI ; � ) = N (za ju� a (I j� ); � � a (I j� )) and
q� s (zs jI ; � ) = N (zs ju� s (I j� ); � � s (I j� )) , respectively. We
denote� = ( � a ; � s) for notation simplicity. The log-
likelihood logp� (I j� ) is lower bounded by the evidence
lower bound (ELBO), which is given by

ELBO(I j� ; �; � )

= log p� (I j� ) � DKL (q� a (za jI ; � )jjp� (za jI ; � ))

� DKL (q� s (zs jI ; � )jjp� (zs jI ; � )) (16)

= � DKL (q� s (zs jI ; � )jjp� s (zs))

� DKL (q� a (za jI ; � )jjp� a (za))

+ Eq� a (za j I ;� )q� s (zs j I ;� ) [logp� (I jza ; zs; � )]; (17)

whereDKL denotes the Kullback-Leibler divergence. We
assumep� s (zs) = p� s (zs j� ) and p� a (za) = p� a (za j� ).
For the EBM prior models, the learning gradients to update
� a and� s are given by

r � a ELBO(I j� ; �; � ) (18)

= Ep� a (za ) [r � a U� a (za)] � Eq� a (za j I ;� ) [r � a U� a (za)] ;

r � s ELBO(I j� ; �; � ) (19)

= Ep� s (zs ) [r � s U� s (zs)] � Eq� s (zs j I ;� ) [r � s U� s (zs)] :

Algorithm 2 Variational Learning for NeRF-LEBM
Input : (1) Images and viewpointsf (I i ; � i )gn

i =1 ; (2) Num-
ber of Langevin stepsK � for priors; (3) Langevin step size
for priors� � ; (4) Learning ratesf � � ; � ! g.
Output : (1) � for generator; (2)(� a ; � s) for EBM priors;
(3) � for inference net.

1: Randomly initialize� , � , � a , and� s.
2: repeat
3: For each(I i ; � i ), sample the priorsza�

i � p� a (za)
and zs�

i � p� s (zs) using K � Langevin steps with
a step size� � , which follow Eq. (10) and Eq. (11)
respectively.

4: For each(I i ; � i ), sampleza � q� a (za jI i ; � i ) and
zs

i � q� s (zs jI i ; � i ) using the inference network.
5: � a  � a + � � r � a ELBO (r � a ELBO is in

Eq. (18)).
6: � s  � s + � � r � s ELBO (r � s ELBO is in

Eq. (19)).
7: !  ! + � ! r ! ELBO (r ! ELBO is in Eq. (20),

where! = ( � a ; � )).
8: until converge

Let ! = ( �; � ) be the parameters of the inference networks
and generator. The learning gradients of these models are

r ! ELBO(I j� ; �; � ) (20)

= r ! Eq� a (za j I ;� )q� s (zs j I ;� ) [logp� (I jza ; zs; � )]

�r ! DKL (q� a (za jI ; � )jjp0(za)) � r ! Eq� a (za j I ;� ) [U� a (za)]

�r ! DKL (q� s (zs jI ; � )jjp0(zs)) � r ! Eq� s (zs j I ;� ) [U� s (zs)]

The �rst term on the right hand size of Eq.(20) is the re-
construction by the bottom-up inference encoders and the
top-down generator. The second and the fourth terms are KL
divergences between the inference model and the Gaussian
distribution. These three terms form the learning objec-
tive of the original VAE. The variational learning of the
NeRF-LEBM is given in Algorithm 2.

3.4 Learning without ground truth camera pose

Many real world datasets do not contain camera pose infor-
mation, therefore �tting the models from those datasets by
using Algorithms 1 or 2 is not appropriate. In this section,
we study learning the NeRF-LFBM model from images
without knowing the ground truth camera poses, and gener-
alizing Algorithm 2 to this scenario. We treat the unknown
camera pose as latent variables and seek to infer it together
with the shape and appearance variables in the amortized
learning framework. In our experiments, we assume the
camera is located on a sphere and the object is put in the
center of the sphere. Therefore, the camera pose� can
be interpreted as the altitude angle� 1 and azimuth angle
� 2. However, different from the shape and the appearance,
the camera pose is directional and can be better explained
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through a spherical representation [24]. For implementa-
tion, instead of directly representing each individual angle,
we represent its Sine and Cosine values that directly con-
struct the corresponding rotation matrix that is useful for
subsequent computation. Thus, each rotation angle� i is a
two-dimensional unit norm vector located on a unit sphere.

Following the hyperspherical VAE in [7], we use the von
Mises-Fisher (vMF) distribution to model the posterior dis-
tribution of � . vMF can be seen as the Gaussian distribution
on a hypershere. To model a hypershpere of dimensionm,
it is parameterized by a mean direction� 2 Rm and a con-
centration parameter� 2 R� 0. The probability density of
the vMF is de�ned aspvMF(� j� ; � ) = Cm (� )exp(� � T � ),
whereCm (� ) = � m= 2� 1

(2 � )m= 2 I m= 2� 1 ( � )
, with I l denoting mod-

i�ed Bessel function of the �rst kind at orderl . For
each angel� in � , we design an inference model as
q� � (� jI ) = pvMF(� j� � � (I ); � � � (I )) , where � � � (I ) and
� � � (I ) are bottom-up networks with parameters� � that
mapsI to � and� . We assume the prior of� to be a uni-
form distribution on the unit sphere (denoted asU(Sm � 1)),
which is the special case of vMF with� = 0 . The key to use
the amortized inference is to compute the KL divergence
between the posterior and the prior, which can follow

DKL (pvMF(� ; � )jjU(Sm � 1))

= �
I m= 2(� )

I m= 2� 1(� )
+ log Cm (� ) � log (

2(� m= 2)
� m=2

)
� 1

: (21)

Besides, to compute the ELBO, we need to draw samples
from the inference modelq� � (� jI ), which amounts to sam-
pling from the vMF distribution. We follow the sampling
procedure in [7] for this purpose in our implementation.

4 Experiments

4.1 Datasets

To evaluate the proposed NeRF-LEBM framework and
the learning algorithms, we conduct experiments on three
datasets. The Carla dataset is rendered by [36] using the
Carla Driving Simulator [8]. It contains 10k cars of differ-
ent shapes, colors and textures. Each car has one 2D image
rendered from one random camera pose. Another dataset is
the ShapeNet [6] Car dataset, which contains 2.1k different
cars for training and 700 cars for testing. We use the images
rendered by [37] and follow its split to separate the training
and testing sets. Each car in the training set has 250 views
and we only use 50 views of them for training. Each car in
the testing set has 251 views. each image is associated with
its camera pose information.

4.2 Random image synthesis

We �rst evaluate the capability of image generation of the
NeRF-LEBM on the Carla dataset, where the camera pose

(a) NeRF-LEBM with MCMC inference

(b) NeRF-LEBM with amortized inference

Figure 1: Images generated by the NeRF-LEBM models
trained on the Carla dataset, where the camera poses are
given. (a) MCMC inference (b) amortized inference.

information is available. We try to answer whether the latent
space EBMs can capture the underlying factors of objects in
images and whether it is better than the Gaussian prior. We
train our models on images of resolution64� 64 through
both MCMC-based inference in Algorithm 1 and amortized
inference in Algorithm 2. Once a model is trained, we can
generate new images by �rst randomly sampling(za ; zs)
from the learned EBM priors and a camera pose� from a
uniform distribution, and then using the NeRF-based gener-
ator to map the sampled latent variables to the image space.
The synthesized images by NeRF-LEBM using MCMC in-
ference and amortized inference are displayed in Figures 1a
and 1b, respectively. We can see the learned models can
generate meaningful and highly diversi�ed cars with differ-
ent shapes, appearances and camera poses. To quantitatively
evaluate the generative performance, we compare our NeRF-
LEBMs with some baselines in terms of Fréchet inception
distance (FID) [16] in Table 1. The baselines include the
NeRF-VAE [21], which is a NeRF-based generator using
Gaussian prior and trained with variational learning, and the
NeRF-Gaussian-MCMC, which is a NeRF-based generator
using MCMC inference and Gaussian prior. To make a fair
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