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Abstract

'We propose the NeRF-LEBM, a likelihood-
based top-down 3D-aware 2D image generative
model that incorporates 3D representation via
Neural Radiance Fields (NeRF) and 2D imaging
process via differentiable volume rendering. The
model represents an image as a rendering process
from 3D object to 2D image and is conditioned on
some latent variables that account for object char-
acteristics and are assumed to follow informative
trainable energy-based prior models. We propose
two likelihood-based learning frameworks to train
the NeRF-LEBM: (i) maximum likelihood esti-
mation with Markov chain Monte Carlo-based
inference and (ii) variational inference with the
reparameterization trick. We study our models
in the scenarios with both known and unknown
camera poses. Experiments on several benchmark
datasets demonstrate that the NeRF-LEBM can
infer 3D object structures from 2D images, gener-
ate 2D images with novel views and objects, learn
from incomplete 2D images, and learn from 2D
images with known or unknown camera poses.

1 Introduction

1.1 Motivation

Towards the goal of 3D-aware image synthesis, existing
methods generate 3D representations of objects either in a
voxel-based format [55] or via intermediate 3D features [1],
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and then use the differentiable rendering operation to render
the generated 3D object into 2D views. However, the voxel-
based 3D representation is discrete and memory-inefficient
so that the methods are limited to generating low-quality
and low-resolution images of objects. Notably, the Neu-
ral Radiance Field (NeRF) [25] has become a new type
of 3D representation of objects and shown impressive re-
sults for new view synthesis. It represents a continuous
3D scene or object by a mapping function parameterized
by a neural net, which takes as input a 3D location and a
viewing direction and outputs the values of color and den-
sity. The visualization of the 3D object can be achieved
through generating different views of images by querying
the mapping function at each specific 3D location and view-
ing direction, followed by volume rendering operation [17]
to produce image pixel intensities. In general, each NeRF
function can only represent one single object and need to
be trained from multiple views of images of that object. By
generalizing the original NeRF function to a conditional
version that involves latent variables that account for the
appearance and shape of the object, GRAF [36] builds a 2D
image generator based on the conditional NeRF and trains
the generator for 3D-aware controllable image synthesis
via adversarial learning. The NeRF-VAE [21] proposes to
train the NeRF-based generator via variational inference,
where the bottom-up inference network allows the inference
of 3D structures of objects in unseen testing images. Both
GRAF and NeRF-VAE assumes the object-specific latent
variables to follow simple and non-informative Gaussian
distributions. As a likelihood-based model, the NeRF-VAE
can only handle training images with known camera poses
because of the difficulty of inference of the unknown camera
pose for each observed image. The GRAF, which is a non-
likelihood-based generative model, can easily learn from
images with unknown camera poses because its adversarial
learning scheme does not need to deal with inference. Re-
cently, we have witnessed the rapid advance of adversarial
NeRF-based generative models, however, the progress in
developing likelihood-based NeRF-based generative models
has been lagging behind. Conceptually, likelihood-based
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generative models have many advantages, e.g., stable learn3. We propose to train the model via amortized inference
ing process without a mode collapse issue, capability of by recruiting inference networks. Due to the use of
inferring latent variables from training and testing examples, EBM priors, our algorithm is different from the learn-
and capability of learning from incomplete data via unsu- ing framework of the NeRF-VAE.

pervised learning. Thus, this paper aims at pushing forward

the progress of likelihood-based generative radiance eld. 4- We are the rst to solve the problem of inferring un-
known camera poses in variational inference frame-

To be speci c, by leveraging the NeRF-based image genera- ok through a novel posterior and prior setting.

tor and the latent space energy-based models (LEBBE]) [

this paper proposes the NeRF-LEBM, a novel likelihood- 5. We conduct extensive experiments to test the ef ciency,
based 3D-aware generative model for 2D images. It builds  effectiveness and performance of the proposed NeRF-
energy-based models (EBMs) on the latent space of the LFBM model and learning algorithms.

NeRF-based generatdsd]. The latent space EBMs are

treated as informative prior distributions. We can follow the 1 5 Related work

empirical Bayes, and train the EBM priors and the NeRF-

based generator simultaneously from observed data. ThgD-aware image synthesis Prior works study control-
trainable EBM priors over latent variables (appearance anthble image generation by adopting 3D data as supervi-
shape of the object) allow sampling novel objects from thesion [38, 55] or 3D information as inputl, 31]. Several
model and rendering images with arbitrary viewpoints, asyorks [18, 15, 26, 22] build discriminative mapping func-
well as improve the capacity of the latent spaces and théions from 2D images to 3D shapes, followed by differen-
expressivity of the NeRF-based generator. Suppose there ifible rendering to project the 3D generated objects back
a set of 2D training images presenting multiple objects withto images for computing reconstruction errors on image
various appearance, shapes and viewpoints. We rst studgomain. Unlike the aforementioned reconstruction-based
the scenario ofZ1], in which the viewpoint of each image is  frameworks, several recent works, such as GR26},[GI-
known. We propose to train the models by maximum likeli-RAFFE [28], pi-GAN [5], and NeRF-VAE R1], build 2D
hood estimation (MLE) with Markov chain Monte Carlg][  generative models with NeRF function and differentiable
(MCMC)-based inference, in which no extra assisting netrendering and assume unobserved object-speci ¢ variables
work is required. At each iteration, the learning algorithmto follow known Gaussian prior distributions. They are
runs MCMC sampling of the latent variables from the EBM trained by adversarial learnindq] or variational infer-
priors and the posteriors. The update of the EBM priors isence pP0]. Our model is also a NeRF-based generative
based on the samples from the prior and the posterior dignodel, but assumes latent object-speci ¢ variables to follow
tributions, while the update of the generator is based on thénformative prior distributions parameterized by energy-
samples from the posteriors and the observed data. Furth@yased modelsfl]. We propose to train NeRF-based gen-
more, for ef cient training and inference, we also proposeerator and EBM priors simultaneously by likelihood-based
to use the amortized inference to train the NeRF-LEBM agearning with either MCMC or amortized inference.

an alternative. Lastly, we do not assume the camera pose

of each image is given and treat it as latent variables thaénergy-based models Recently, with the striking expres-
follows a uniform prior distribution. We propose to use gjye power of modern deep networks, deep data space
the von Mises-Fisher (vMF)7] distribution to approximate ggms [41] have shown impressive performance in model-
the posterior of the camera pose in our amortized infefing distributions of different types of high-dimensional data,
ence framework. Our experiments show that the proposeg.g_, imagesq9, 53, 11, 45, 54, 48], videos K6, 47], 3D
likelihood-based generative model can not only synthesizgo|umetric shapesiB, 44}, and unordered point cloudé 3.
images with new objects and arbitrary viewpoints but alsogesjdes, deep latent space EBN&][ which stand on gen-
learn meaningful disentangled representation of images iBrator networks and serve as prior distributions of the latent
scenarios of both known and unknown camera poses. Thgyriaples, have proven to be effective in learning expressive
model can even learn from incomplete 2D training imagegatent spaces for tex8p, 50], image B2, trajectory gener-
for control generation and 3D aware inference. Our papegtion [34], and saliency predictiorbp]. In our paper, we
makes the following contributions: build EBMs on the latent spaces of a NeRF-based genera-
or to serve as prior distributions of object appearance and

1. We propose a novel NeRF-based 2D generative modely,, e for camera pose-conditioned image generation.

with a trainable energy-based latent space, for 3D-

aware image synthesis and disentangled representatio,\r)ICMC inference Our model is also related to the theme

2. We propose to train the model by MLE with MCMC- of training deep latent variable models with MCMC infer-
based inference, which does not rely on separate ne¢nce [L3, 39, 56, 40, 51, 30, 2, 52, 49]. Different from the
works and is more principled and statistically rigours above works, our paper is the rst to study the MCMC
than adversarial learning and variational learning.  inference in a NeRF-based generator with two EBM priors.
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2 Background top-down 2D image generator based on a conditional NeRF
structure for the intrinsic 3D representation of the object
2.1 Neural Radiance Field in an image. Let? andz® be the latent variables that de-

ne the shape and the appearance of an object, respectively.
A continuous scene can be represented by a Neural Radiange andzs are assumed to be independent. They together
Field (NeRF) p9], which is a mapping functioh whose  specify an object. Let be the camera pose. The generator
input is a 3D locatiox 2 R® and a 3D unit vector as G consists of an object-conditioned NeRF functipras
viewing directiond 2 R®, and whose output is an RGB  shown in Eg. (2) and a differentiable rendering function as
color valuec 2 R® and a volume density. Formally,  shownin Eq. (1). are trainable parameters of the generator.
f o (d) ! (c ), wheref isa neural network with Gijven an object speci ed byz?; z°), the generator takes
parameters. Given a xed camera pose, to render a 2D the camera poseas input and outputs an image by using
image from the NeRF representatibn we can follow the  the NeRFg to render an image from the posevith the
classical volume rendering methodl7] to calculate the render operation in Eq. (1). Given a dataset of 2D images
color of each pixek 2 R? in the 2D image. The color of different objects captured from different viewing angles
of the pixel is determined by the color and volume denSity(i_e_’ different camera pose), in which the camera pose of
values of all points along the camera raghat goes through  each image is provided. We assume each image is gener-
that pixelv. In practice, we can followZ5] and sampleM  ated by following the generative process de ned®yand
pointsf x/ g1, from the near to far bounds along the cameragach of the latent variabldg®; z°) is assumed to follow
rayr and obtain a set of corresponding colors and densitiegn informative prior distribution that is de ned by a train-
f(cf; g, byf ,and then we compute the colB(r)  aple energy-based model (EBM). Speci cally, the proposed
for the camera ray by 3D-aware image-based generative model is given by the
following deep latent variable model

bd
C(r) = - Tir (1 exp( Ir {))C{, (1) 1= G (Za;ZS; )+ :
o nor TR . . N (0, 2|),
where | = jix{,; X jj2isthe cgstance between adjacent (3)
. a ay .
sample points, and@l’ = exp( ]':11 I 1) is the accu- zZ p.(2);
mulated transmittance along the ray from the 1st point to zZ p.(2);

thei-th point, i.e., the probability that the ray travels from ) ) ] ) )
X} tox! without being blocked. To render the whole image""_he_rt‘)e is the o.bszervat_l(r)]n rkegdual f°"8W'S% a Gaussian
I, we need to compute the color for the ray that corresponddistributionN (0; - “I') with a known stan ar eV|at|0|2,

to each pixel in the image. Let (v) be the camera ray cor- and! denotes the identity matrix. Bofh, (z*) andp ,(2°)
responding to the pixel, and the rendered image is given '€ modeled by EBMs

by I(v) = C(r(v));v 2 D, whereD is the image domain. 1
p.(z%)= Z( ) exp[ U, (Pw(z); (4
2.2 Conditional Neural Radiance Field :
. o _ p.(2%)= exp[ U ,(2°)]w(2%); ®)
The original NeRF functiofi is a 3D representation of a Z( s)

single scene or object. To generalize the NeRF to represeqjich are in the form of exponential tilting of a Gaussian
different scenes or objects3€] proposes the conditional | oference distributiogy N (0; 21). (Note thaig could

NeRF function be a uniform reference distributiorl) , (z) andU _(2°)
g :(xdz%A)! (¢ ); @ are called energy functions, both of which are parameterized
by multilayer perceptrons (MLPs) with trainable parameters
which is conditioned on object-speci c variables, andz®, . and s, respectively. The energy function takes the cor-

corresponding to object appearance and shape respectivalsponding latent variabjgs as input and outputs a scalar as

It can be further decomposed into(j‘)l S(x;Z2%) 0 h, (i) energy. Beside ( 2)= exp[ U ,(z)]qp(z%)dz* and

¢, 1 (hid;z?) ! coand (ii)g® : h! toshowthe z( ()= “exp[ U (2)]qp(z%)dz® are intractable nor-

dependency among the input variables in the desi@{ of.  malizing constants. Althougty(z*) anday(z%) are Gaus-
sian distributionsp _ (z%) andp , (x®) are non-Gaussian

3 Proposed framework priors, where 5 and ¢ are learned from the data together
with the parameters of the generatoG .

3.1 NeRF-based 2D generator with EBM priors

3.2 Learning with MCMC-based inference
We are interested in learning a 3D-aware generative model

of 2D images, with the purposes of controllable image synFor convenience of notation, let = (; 4; s) and
thesis and disentangled image representation. We build a=( ,; ). Given asetof 2D images with known camera
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poses, i.ef(li; i);i =1;::;ng, we cantrain by maxi- wheret indexes the time step,is the Langevin step size,
mizing the observed-data log-likelihood function de ned as ande? ande? are independent Gaussian noises that help the
MCMC chains to escape from local modes during sampling.

X
L()= 1 logp (Iij i) The gradients in Eq. (10) and Eq. (11) are given by
n
i=1
L0 Tz Falogp ()= 1 »U (&) =2 (12
=~ log p @iZ)p iz 7 i)dzidz rslogp ()= r1 U (&) =2  (13)
i=1
1 X 4 wherer U _(z%) andr sU _(2°) are ef ciently com-

= log p (2P (Z)p (lijzh; 25 1)dz'dZ 5 puted by back-propagation.

i=1
For each observed; ), we can sample from the pos-
wherep (22;2°) = p ,(2%)p .(Z°) because?® andz® are : a. st . . i
statistically independent, and the latent variables are imégnor P (z%Z7j1; ) by alternately running Langevin dy

i - S a aj—5S- |-

grated out in the complete-data log-likelihood. According tonam.|c§_. g/ye X2z and samplea fromp (z°jz i )/
L L p (I;2%jz%; ), and then x z% and samplez® from

the Law of Large Number, maximizing the likelihoad ) At eia. . .
. ) . 2 p (Z%j22;1; ) /I p (I;2%z%; ). The Langevin sampling
is approximately equivalent to minimizing the Kullback- step follows
Leibler (KL) divergence between model (Ij ) and data P 0
Qistributionpdata(lj ) if the numbem of training examples 2., =22+ 1 alogp (1,225 )+ 279?; (14)
is very large. The gradient &f( ) is calculated based on . _

Za =Z+ rslogp (LZjZ )+ 2 (15)

r logp (lj )= Ep (z2;28]1; )[r logp (I;2%;2% )] )
—E i, lo ay 4 lo s The key steps in Eqg. (14) and Eg. (15) are to compute the
p @zji)[r logp () + 1 logp (Z°) gradients of

+r logp (1jz% 2% )l (6)
which can be further decomposed into three parts, i.e., th@gp (1:2%z% ) =loglp . (Z)p (1jz%;2°; )] = Ca
gradients for the EBM prior of object appearancge il G (&2 )j*22 U, (@) i Bj*=2 %
Ep @iz [ logp . (2%)] @) logp (L2 )=Iog[p23(zsgp iz 2% )l = Czs )
H . 5S. Hp—= S H Sii & — .
=B, [r U@ Ep @yl U@ it G (#z)j=2° U.(2) ] zj=2"
the gradients for the EBM prior of object shape whereC, andCs are constants independentf z° and .
E I o ()] ) After suf cient alternating Langevin steps, the updardd
p(zzil ) gp . andz® follow the joint posteriop (z2;z%jl; ), andz? and
=B . [r U (D)) Ep @jiylr U (D) Zs follow p (23j1; ) andp (25j1; ), respectively.
as well as the gradients for the NeRF-based generator  |etz? andz’ be the samples drawn from the EBM priors
Ep oozt [r logp (12225 )] 9) by Langevin dynamics in Egs. (10) and (11). &t and

A s A s 5 zf* be the inferred latent variables of the observafion ;)
=By @) T G (252 )1 G (52 )= 7 by Langevin dynamics in Egs. (14) and (15). The gradients
Since the expectations in Eq. (7), Eq. (8), and Eq. (9) ar®f the log-likelihoodL over ,, s, and are estimated by
analytically intractable, Langevin dynamica7], which is

a gradient-based MCMC sampling method, is employed t¢ | = 1 X r.u.@@) 1 X roLU L)
draw samples from the prior distributions (i.p.,, (z*) and n._, n._,

p .(2%)) and the posterior distribution (i.e, (z%; z°j1; )), 1 1

and then Monte Carlo averages are computed to estimate (L = — rUu.(z) = rU.(");
the expectation terms. As shown in Eqg. (7) and Eq. (8), the Nz Mo

update of the EBM prior model, (or ) is based on the s I i G (22 )
difference betweer? (or z5) sampled from the prior distri- ' L = n rG(z" ;77 ) 5

butionp _(z?) (orp (z°)) andz? (or 2°) inferred from the i=1

posterior distributiop (z%j1; ) (orp (2°j1; )). Accord-  The |earning algorithm of the NeRF-LEBM with MCMC
ing to Eq.(9), the update of the generataelies onz* and  jnference can be summarized in Algorithm 1.
Z® inferred from the posterior distributiom (z2; Z%j1; ).

To sample from the prior distributions _ (z%) andp . (z°)
by Langevin dynamics, we updatg andz® by
2, =22+ 1 alogp ,(22)+ pfe?; (10)  Even though both prior and posterior sampling require
s < ! N Langevin dynamics. Prior sampling is more affordable
Zg =+ rslogp (Z)+ 2€; (1) than posterior sampling because the network structure of

3.3 Learning with amortized inference
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Algorithm 1 Learning NeRF-LEBM with MCMC inference  Algorithm 2 Variational Learning for NeRF-LEBM
Input: (1) Images and viewpoinf{l;; )g’,; (2) Num- Input: (1) Images and viewpointl;; i)g, ; (2) Num-
bers of Langevin steps for priors and postefisr ;K*g;  ber of Langevin stepK for priors; (3) Langevin step size

(3) Langevin step sizes for priors and postdrior; *g; (4)  for priors ; (4) Learning rate§ ; | g.

Learning rates for priors and generator ; g. Output: (1) for generator; (2] a; ) for EBM priors;

Output: (1) for generator; (2] a; <) for EBM priors; (3) for inference net.

(3) Latent variable$(z; ) g, - 1: Randomly initialize , , &, and s.

1: Randomly initialize , 4, s, andf(z};Z)gl; . 2: repeat

2: repeat 3: For each(l;; i), sample the priorg® p . (%)

3: For each(l;; i), sample the prior of object appear- andz’ p .(z°) usingK Langevin steps with
ancez’ p .(z%) and the prior of object shape a step size , which follow Eg. (10) and Eq. (11)
z p .(Z°) usingK steps of Langevin dynam- respectively.
ics with a step size , which follows Eqg. (10) and  4: For each(l;; i), samplez2 q _(Z2jl;; ;) and
Eq. (11), respectively. z g .(2%li; i) using the inference network.

4: For each(l;; i), run K* Langevin steps with  5: a at r _ELBO (r _ELBO is in
a step size *, to alternatively samplez® from Eq. (18)).
p (8jz;1i; i), while xing z; and sample; from 6: s s+ r _ELBO (r _ELBO is in
p (Zjz2;1i; i), while xing Z*. Eqg. (19)).

5: a at 1 L. 7 ! ' + ,r, ELBO (r , ELBO s in Eq. (20),

6: s s+ r L. where! = ( 3; )).

7: + r L. 8: until converge

8: until converge

Let! =(; ) bethe parameters of the inference networks
U , orU _ is much smaller than that of the NeRF-basedand generator. The learning gradients of these models are
generatoiG and the posterior sampling need to perform i
back-propagation o® , which is time-consuming. In this rELBO(Ij 55 ) (20)
section, we propose to train the NeRF-LEBM by adopt=" 1 Eq _ (2ji; )q . (zji; y[logp (1j2%;2°; )]
ing amorti;ed inference,_in which the pqsterior distribu-y | p, (q L1 )iipo(Z) T Eq i y[U L (2]
tions,p (22jl; ) andp (2°jl; ), are approximated by sep- S e < s
arate bottom-up inference networks with reparameterizal D (q . (ZT5 iPo(Z)) 11 Bq i)V . (Z)]
tion trick, q ,(23jl; ) = N(z%ju _(lj ); .,(j)) and
qg.(2%l; )= N(Zfju _(1j ); .(j ), respectively. We
denote = ( ,; ) for notation simplicity. The log-
likelihood logp (lj ) is lower bounded by the evidence
lower bound (ELBO), which is given by

The rst term on the right hand size of Eq.(20) is the re-
construction by the bottom-up inference encoders and the
top-down generator. The second and the fourth terms are KL
divergences between the inference model and the Gaussian
distribution. These three terms form the learning objec-
tive of the original VAE. The variational learning of the

ELBO(”‘ ) . . _ NeRF-LEBM is given in Algorithm 2.
=logp (1j ) Dxe(a . (21 )iip (%15 )
Dk (a . (Z%]1; Jiip (Z°)1; ) (16) 3.4 Learning without ground truth camera pose

—_ SHE H S
= Deda, (Zaj.l' )J.J.p ' a)) Many real world datasets do not contain camera pose infor-
Dk (a , (715 iip = (%)) mation, therefore tting the models from those datasets by
+ Eq (21, )a .= llogp (1j2%:2°% );  (17)  using Algorithms 1 or 2 is not appropriate. In this section,
we study learning the NeRF-LFBM model from images
whereDyk. denotes the Kullback-Leibler divergence. We without knowing the ground truth camera poses, and gener-
assumep =(z°) = p (2% ) andp a(z%) = p a(z% ).  alizing Algorithm 2 to this scenario. We treat the unknown
For the EBM prior models, the learning gradients to updatecamera pose as latent variables and seek to infer it together

aand s are given by with the shape and appearance variables in the amortized
learning framework. In our experiments, we assume the
r LELBO(Ij ;; ) (18)  camera is located on a sphere and the object is put in the
=E e [F U@ Eq,@p)[F LU LB center of the sphere. Therefore, the camera posan
r _ELBO(Ij ; ; ) (19) be interpreted as the altitude angleand azimuth angle

_ s . 2. However, different from the shape and the appearance,
=By & [r U (2] Eq @zp[r U (2 the camera pose is directional and can be better explained
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through a spherical representati@#], For implementa-
tion, instead of directly representing each individual angle,
we represent its Sine and Cosine values that directly con-
struct the corresponding rotation matrix that is useful for
subsequent computation. Thus, each rotation angkea
two-dimensional unit norm vector located on a unit sphere.

Following the hyperspherical VAE in/], we use the von
Mises-Fisher (vMF) distribution to model the posterior dis-
tribution of . vMF can be seen as the Gaussian distribution
on a hypershere. To model a hypershpere of dimension
it is parameterized by a mean directior2 R™ and a con-
centration parameter2 R . The probability density of
the vWMF isdened apwir( j : )= Gn( )exp( T ), (a) NeRF-LEBM with MCMC inference
whereG, () = m with I, denoting mod-
i ed Bessel function of the rst kind at ordet. For
each angel in , we design an inference model as
a (i) = pwmeCj (1; (1), where (1) and

(1) are bottom-up networks with parameters that
mapsl to and . We assume the prior ofto be a uni-
form distribution on the unit sphere (denoted #S™ 1)),
which is the special case of vMF with= 0. The key to use
the amortized inference is to compute the KL divergence
between the posterior and the prior, which can follow

D (puve( 3 )iFUS™ 1)
Im=2() N b) NeRF-LEBM with ized inf
+log Gn( ) log( ) (1) (b) NeRF- with amortized inference

Im=2 1( ) m=2 _
Figure 1: Images generated by the NeRF-LEBM models

Besides, to compute the ELBO, we need to draw samplegained on the Carla dataset, where the camera poses are
from the inference mode] ( jl), which amounts to sam- ;e *(2) MCMC inference (b) amortized inference.

pling from the vMF distribution. We follow the sampling
procedure in [7] for this purpose in our implementation.

4 Experiments information is available. We try to answer whether the latent
space EBMs can capture the underlying factors of objects in
4.1 Datasets images and whether it is better than the Gaussian prior. We

train our models on images of resolutié4 64 through
To evaluate the proposed NeRF-LEBM framework andboth MCMC-based inference in Algorithm 1 and amortized
the learning algorithms, we conduct experiments on threéference in Algorithm 2. Once a model is trained, we can
datasets. The Carla dataset is rendered3byysing the  generate new images by rst randomly samplif®d; z°)
Carla Driving Simulator]. It contains 10k cars of differ- from the learned EBM priors and a camera posem a
ent shapes, colors and textures. Each car has one 2D imagsiform distribution, and then using the NeRF-based gener-
rendered from one random camera pose. Another dataset&or to map the sampled latent variables to the image space.
the ShapeNetd] Car dataset, which contains 2.1k different The synthesized images by NeRF-LEBM using MCMC in-
cars for training and 700 cars for testing. We use the imagefgerence and amortized inference are displayed in Figures 1la
rendered by37] and follow its split to separate the training and 1b, respectively. We can see the learned models can
and testing sets. Each car in the training set has 250 viewgenerate meaningful and highly diversi ed cars with differ-
and we only use 50 views of them for training. Each car inent shapes, appearances and camera poses. To quantitatively
the testing set has 251 views. each image is associated wittvaluate the generative performance, we compare our NeRF-

its camera pose information. LEBMs with some baselines in terms of Fréchet inception
distance (FID) 16] in Table 1. The baselines include the
4.2 Random image synthesis NeRF-VAE [21], which is a NeRF-based generator using

Gaussian prior and trained with variational learning, and the
We rst evaluate the capability of image generation of theNeRF-Gaussian-MCMC, which is a NeRF-based generator
NeRF-LEBM on the Carla dataset, where the camera posesing MCMC inference and Gaussian prior. To make a fair
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