
ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS

Volume 0, Number 0, 1–9, 0000

Sparse and Deep Generalizations of the FRAME Model

YING NIAN WU, JIANWEN XIE, YANG LU, AND SONG-CHUN ZHU

In the pattern theoretical framework developed by Grenander and advo-
cated by Mumford for computer vision and pattern recognition, different
patterns are represented by statistical generative models. The FRAME
(Filters, Random fields, And Maximum Entropy) model is such a gener-
ative model for texture patterns. It is a Markov random field model (or a
Gibbs distribution, or an energy-based model) of stationary spatial pro-
cesses. The log probability density function of the model (or the energy
function of the Gibbs distribution) is the sum of translation-invariant po-
tential functions that are one-dimensional non-linear transformations of
linear filter responses. In this paper, we review two generalizations of
this model. One is a sparse FRAME model for non-stationary patterns
such as objects, where the potential functions are location specific, and
they are non-zero only at a selected collection of locations. The other
generalization is a deep FRAME model where the filters are defined by
a convolutional neural network (CNN or ConvNet). This leads to a deep
convolutional energy-based model. The local modes of the energy func-
tion satisfies an auto-encoder which we call the Hopfield auto-encoder.
The model can be learned by an “analysis by synthesis” algorithm that
iterates a sampling step for synthesis and a learning step for analysis.
The algorithm admits an adversarial interpretation where the learning
step and sampling step play a minimax game based on a value function.
We can recruit a generator model as a direct and approximate sampler
of the deep energy-based model to speed up the sampling step, and the
two models can be learned simultaneously by a cooperative learning al-
gorithm.

KEYWORDS AND PHRASES: Adversarial interpretation, Convolutional neural
network, Cooperative learning, Energy-based model, Generator model, Hope-
field auto-encoder, Sparse coding.

1. Introduction

1.1. Pattern theory and generative models

Pattern theory is a theoretical and computational framework developed by Grenan-
der [33] and advocated by Mumford [63] for computer vision and pattern recogni-
tion. In this framework, the patterns are represented by statistical generative mod-
els that are in the form of probability distributions of the signals such as images.

1

http://intlpress.com/site/pub/pages/journals/items/amsa/_home/_main/index.html

2 Wu, Xie, Lu and Zhu

Intuitively, such models tell us what the patterns look like, e.g., what a cat looks
like and what a dog looks like. The models can be learned from the observed train-
ing examples, e.g., images of cats, or images of dogs, often via an “analysis by
synthesis” scheme, where the parameters of the models are updated to make the
synthesized examples generated by the learned models to be similar to the ob-
served examples, e.g., a model of cats can generate images that are similar to the
observed images of cats. With the learned models of the patterns, pattern recog-
nition can be accomplished by likelihood-based or Bayesian inference, e.g., the
knowledge of what cats and dogs look like enables us to recognize cats and dogs
from testing images by matching the images to the models.

More specifically, the generative models can be useful in the following sce-
narios of learning. (1) Unsupervised learning, where the observed data are not
annotated or labeled, for instance, we observe images of cats and dogs, but do not
know which images are cats and which images are dogs. The generative models
enable us to learn features or hidden structures (such as clusters or attributes) in
the data. (2) Semi-supervised learning, where only part of the data are annotated.
The generative models enable us to make better use of the unlabeled data for the
purpose of classification or prediction. (3) Supervised learning from small data.
The generative models enable us to learn from the data more efficiently (in terms
of statistical accuracy). (4) Reinforcement learning in the Markov decision pro-
cess framework. The generative models can be used for model-based inference of
the states and model-based planning of the action policies. In addition to learning,
realistic generative models are also useful for computer graphics.

1.2. FRAME model of texture patterns

In this paper, we shall review a particular generative model called FRAME (Fil-
ters, Random field, And Maximum Entropy) model developed by Zhu, Wu, and
Mumford [99, 86, 97] and its recent generalizations.

The FRAME model was originally developed for modeling texture patterns,
which are ubiquitous in natural scenes, such as grasses, tree leaves, brick walls,
water waves, etc. The problem of texture perception in pre-attentive vision was ex-
tensively studied by Julesz, whose pursuit for a solution to this problem was driven
by the following two fundamental questions. (1) What are the statistical proper-
ties that define a texture? [47] (2) What are the basic elements, or textons, that
constitute a texture? [48] For the first question, researchers have studied second
order statistics, k-gon statistics, etc [96]. For instance, mathematicians Diaconis
and Freedman [14] designed image pairs with the same second order statistics but
different texture patterns. The second question inspired Marr [60] to propose the
theory of primal sketch based on image primitives or local image tokens detected

Sparse and Deep Generalizations of the FRAME Model 3

by some local image operators or feature extractors. An important advance was
made by Heeger and Bergen [37], who showed that realistic texture patterns can
be synthesized by matching the marginal histograms of responses from a bank of
linear filters.

Inspired by the idea that texture statistics can be defined by the marginal his-
tograms of filter responses, Zhu, Wu, and Mumford [99] developed the FRAME
model as the maximum entropy model that is constrained by such statistics. The
resulting maximum entropy model is a Markov random field model or an energy-
based model [54] in the form of a Gibbs distribution [2, 28]. Originated from sta-
tistical physics, the Markov random field models or the Gibbs distributions are an
important class of probability models for spatial processes such as those observed
in natural images. The log probability density function of a Markov random field
model or the energy function of the Gibbs distribution is the sum of potential func-
tions defined on the so-called cliques that consist of neighboring sites or pixels.
The potential functions can be high-dimensional for those cliques that consist of
many pixels, and it is difficult to learn such high-dimensional potential functions
from the data. The FRAME model solves this problem by recruiting a bank of lin-
ear filters, and parametrizing the potential functions as one-dimensional non-linear
transformations of linear filter responses. This model is the maximum entropy dis-
tribution that reproduces the marginal statistics such as marginal histograms of the
filter responses, where for each filter, the marginal histogram is pooled over all the
pixels in the image domain. The bank of filters can be designed, such as Gabor
filters or Gabor wavelets [9] tuned to different locations, scales and orientations.
They can also be learned, together with the non-linear transformations, from the
training data.

Another justification for the FRAME model is via the so-called Julesz ensem-
ble [86, 95], which is the uniform distribution over the set of images with the same
marginal histograms of filter responses. If the image size is large, then the proba-
bility distribution of local image patches is given by the FRAME model. The set
of images constrained by certain feature statistics can be used to define a certain
concept such as a texture pattern. It is related to the micro-canonical ensemble in
statistical physics [29], which is the set of configurations with the same energy.
Under the uniform distribution on the micro-canonical ensemble, the local system
follows the Gibbs distribution or the canonical ensemble.

1.3. Sparse and deep generalizations

The FRAME model is originally developed for modeling spatially stationary pro-
cesses such as stochastic textures, where the potential functions are translation
invariant. In this article, we review two generalizations of the FRAME model. One

4 Wu, Xie, Lu and Zhu

is a sparse FRAME model [87, 89] where the potential functions are location spe-
cific, and they are non-zero only at selected locations. This model is intended to
model image patterns that are non-stationary in the spatial domain, such as object
patterns, e.g., images of cats and dogs. The model can be written as a shared sparse
coding model, where the observed images are represented by a commonly shared
set of wavelets selected from a dictionary. In this shared sparse coding model, the
original linear filters for bottom-up computation (from image to filter responses)
become linear basis functions for top-down representation (from coefficients to
image).

The second generalization of the FRAME model is inspired by the recent
successes of deep convolutional neural networks (CNNs or ConvNets) [53, 51],
and it can be called the deep FRAME model [58]. The filters used in the origi-
nal FRAME model are linear filters that capture local image features. In the deep
FRAME model, the linear filters are replaced by the non-linear filters at a certain
convolutional layer of a pre-trained deep ConvNet. Such filters can capture more
complex patterns, and the deep FRAME model built on such filters can be more
expressive.

Instead of using filters from a pre-trained ConvNet, we can also learn the fil-
ters from the observed data. The resulting model is a deep convolutional energy-
based model [66, 8, 90] or what can be called a generative ConvNet model [90] .
Such a model can be considered a recursive multi-layer generalization of the orig-
inal FRAME model. The log probability density function of the original FRAME
model consists of non-linear transformations of linear filter responses. If we re-
peat this structure recursively, we get the generative ConvNet model with multiple
layers of linear filtering followed by point-wise non-linear transformations. It is
possible to learn such a model from natural images [90].

We can generate synthetic images by sampling from the above FRAME mod-
els using Markov chain Monte Carlo (MCMC) such as the Langevin dynamics
[56, 30], which runs gradient descent on the energy function of the model while
adding Gaussian white noises for diffusion. This sampling scheme was first ap-
plied to the original FRAME model by Zhu and Mumford (1998) [97], where
the gradient descent part of the dynamics was interpreted as the Gibbs Reaction
And Diffusion Equation (GRADE). The Langevin dynamics can be used to sam-
ple from deep FRAME model where the gradient can be efficiently computed by
back-propagation.

1.4. Auto-encoder, adversarial interpretation, generator as sampler

The FRAME model can be written as exponential tilting of a reference distribution
such as the uniform measure or the Gaussian white noise model. If the reference

Sparse and Deep Generalizations of the FRAME Model 5

distribution is the Gaussian white noise model, the local modes of the probability
density follow an auto-encoder. We call it the Hopfield auto-encoder, because it
defines the local energy minima of the model [44]. In the Hopfield auto-encoder,
the bottom-up filters detect the patterns corresponding to the filters, then the binary
detection results are used as the coefficients in the top-down representation where
the original filters play the role of basis functions.

The learning of the FRAME model follows the analysis by synthesis scheme
[33]. We can use the Langevin dynamics to sample from the current model to
generate synthetic images. Then we update the model parameters based on the
statistical difference between the observed images and the synthetic images, so that
the model shifts its probability density function, especially the high density regions
or the low energy regions, from the synthetic images to the observed images. In the
zero temperature limit, this learning and sampling algorithm admits an adversarial
interpretation, where the learning step and the sampling step play a minimax game
based on a value function.

The sampling of the FRAME model requires iterative MCMC such as Langevin
dynamics or Hamiltonian Monte Carlo [64]. A recently proposed generator model
[32, 50, 71, 61] can be recruited as a much more efficient non-iterative sampler
that replaces the MCMC sampling by direct ancestral sampling [88].

The rest of the paper is organized as follows. Section 2 introduces the original
FRAME model. Section 3 presents the sparse FRAME model. Section 4 presents
the deep FRAME model. Section 5 explains the Hopfield auto-encoder structure.
Section 6 introduces the generator model as a non-iterative sampler. Section 7
presents the adversarial interpretation. Section 8 concludes with a discussion.

2. FRAME Model

The original FRAME model [99, 86, 97] is based on linear filters. We shall first
review the linear filters as well as linear basis functions. Then we present the
FRAME model.

2.1. Filters and basis functions

Let I(x) be an image defined on the square (or rectangular) domain D, where
x = (x1, x2) (a two-dimensional vector) indexes the coordinates of pixels. We can
treat I(x) as a two-dimensional function defined on D. We can also treat I as a
vector if we fix an ordering for the pixels. Let D = |D| count the number of pixels
in D, i.e., D is the dimensionality of the vector I.

A linear filter is a local weighted sum of image intensities around each pixel. A
linear basis function (or basis vector) is a local image patch intended to represent
image intensities.

6 Wu, Xie, Lu and Zhu

(a) (b)

Figure 1: (a) Filtering or convolution: applying a filter F (3 × 3) on an image I
(6 × 6) to get a filtered image (6 × 6) or feature map F ∗ I. Each pixel of F ∗ I
is computed by the weighted sum of the 3 × 3 pixels of I centered at this pixel.
(b) Gabor filters (wavelets) at different orientations, and Difference of Gaussians
(DoG) filter (the rightmost one). The Gabor wavelets are sine and cosine waves
multiplied by elongated Gaussian functions. The DoG wavelet is isotropic. The
wavelets can appear at different locations and scales.

Suppose we have a set of linear filters {Fk, k = 1, ...,K}. We can apply each
Fk to image I to obtain a filtered image or feature map, denoted by Fk ∗I, which is
of the same size as I and is also defined onD (with proper handling of boundaries).
Let [Fk ∗ I](y) be the filter response or feature at position y, then

(1) [Fk ∗ I](y) =
∑
x∈S

wk,xI(y + x),

where the weights wk,x define the filter Fk, and S is the localized support of the
filter centered at the origin. See Figure 1 for an illustration, where S is 3× 3, and
D is 6 × 6. In practice, both S and D can be much larger. S can be different for
different Fk. The filtering operation is also a convolution operation.

Suppose we have a set of prototype basis functions or wavelets {Bk(x), k =

1, ...,K}. We assume that each Bk is supported on a local domain S centered at
the origin. Again, S may be different for different Bk. We can spatially shift or
translate Bk to a position y to get a translated copy of Bk, denoted by Bk,y(x) =

Bk(x − y). We can treat each Bk,y(x) as a function defined on x ∈ D, just as I,
except that Bk,y(x) is locally supported. We can also treat Bk,y as a vector of the
same dimensionality as I.

Sparse and Deep Generalizations of the FRAME Model 7

The basis functions are used in the linear representation

I(x) =
∑
k,y

ck,yBk,y(x) + ε(x),(2)

where ck,y are the coefficients, often assumed to be sparse, and ε(x) is the residual
image.

The inner product between I and Bk,y is

〈I, Bk,y〉 =
∑
x∈D

I(x)Bk,y(x) =
∑
x∈S

I(y + x)Bk(x).(3)

The connection between Bk,y and Fk is

〈I, Bk,y〉 = [Fk ∗ I](y)(4)

if Bk(x) = wk,x. Examples of basis functions or filters include oriented and
elongated Gabor wavelets [9] as well as isotropic Difference of Gaussian (DoG)
wavelets as illustrated by Figure 1. In subsequent sections, we shall often drop the
argument x in I(x) and Bk,y(x), and treat them as vectors.

While the filters are about bottom-up feature extraction (bottom-up means
from the image to the filter responses), the basis functions are about top-down
linear representation (top-down means from the coefficients to the image). It is
desirable to unify these two roles in the same model.

2.2. Sparse representation

Assume we are given a dictionary of wavelets or basis functions {Bk,x}, where k
may index a finite collection of prototype functions {Bk, k = 1, ...,K}, and where
Bk,x is a spatially translated copy of Bk to position x. We can represent an image
I by

I =
∑
k,x

ck,xBk,x + ε,(5)

where ck,x are the coefficients, and ε is the residual image. It is often assumed that
the representation is sparse, i.e., most of the ck,x are equal to zero. The resulting
representation is also called sparse coding [67, 20].

The sparsification of ck,x, i.e., the selection of the basis functions, can be ac-
complished by matching pursuit [59] or basis pursuit/Lasso [5, 78]. Using a Lasso-
like objective function, the dictionary of basis functions {Bk} can be learned from

8 Wu, Xie, Lu and Zhu

a collection of training images [67, 19]. It is sometimes called sparse component
analysis [17]. It can be considered a generalization of factor analysis. For natu-
ral images, the basis functions learned resemble the Gabor and DoG wavelets in
Figure 1.

2.3. FRAME model

The original FRAME model [99, 86, 97] for texture patterns is a stationary or spa-
tially homogeneous Markov random field model [2, 28] defined by the following
probability distribution:

p(I;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈D

λk ([Fk ∗ I](x))

]
,(6)

where each λk() is a one-dimensional non-linear function to be estimated from
the training data, λ = (λk(), k = 1, ...,K), and Z(λ) is the normalizing constant
that makes p(I;λ) integrate to 1. Model (6) is stationary because the function λk()
does not depend on position x.

λk() can be further parametrized, e.g., λk(r) = wkh(r) for some given h(), to
make (6) an exponential family model.

As a Markov random field model or a Gibbs distribution, the FRAME model
represents the potential functions in the form of λk ([Fk ∗ I](x)), i.e., one-dimensional
non-linear transformations of filter responses. The model achieves the maximum
entropy among all the distributions with fixed marginal distributions of [Fk ∗ I](x)
for k = 1, ...,K.

The filters {Fk} can be designed, such as the Gabor filters, or be learned from
the data together with λk.

3. Sparse FRAME

This section presents the sparse FRAME model. We start from a dense version
of the model. We then present the maximum likelihood learning algorithm. After
that, we describe the generative boosting algorithm for learning the sparse version
of the model.

3.1. Dense model

We start from the non-stationary or spatially inhomogeneous FRAME model [87,
89, 84] based on a dictionary of basis functions or wavelets {Bk,x,∀k, x} (we
assume that the dictionary of wavelets, such as the Gabor and DoG wavelets in

Sparse and Deep Generalizations of the FRAME Model 9

Figure 1, has been given or has been learned by sparse component analysis [67, 4,
19]). The model is a random field of the following form:

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,xh(〈I, Bk,x〉)

]
q(I).(7)

The above model is a simple generalization of the FRAME model (6), where
〈I, Bk,x〉 is the filter response, which can also be written as [Fk ∗I](x). The param-
eter wk,x depends on position x, so the model is non-stationary. w = (wk,x,∀k, x).
Again Z(w) is the normalizing constant. h() is a pre-specified rectification func-
tion. In [87] , h(r) = |r|, i.e., the model is insensitive to the signs of filter re-
sponses. q(I) is a reference distribution, such as the uniform distribution or the
Gaussian white noise model

q(I) =
1

(2πσ2)D/2
exp

[
− 1

2σ2
||I||2

]
,(8)

where D counts the number of pixels in the image domain D.
The reference distribution q(I) can be considered an initial null model without

any features. p(I;w) is an exponential tilting of q(I) to modify q(I) to be close to
the data distribution. According to the maximum entropy principle, among all the
distributions p with the same expectations Ep[h(〈I, Bk,x〉)] for all (k, x), p(I;w)

achieves the minimal Kullback-Leibler divergence KL(p|q). That is, p(I;w) is the
minimal modification of the null model q among all the distributions that reproduce
the observed feature statistics.

In the original FRAME model (6), q(I) is the uniform distribution and is made
implicit. For Gaussian white noise q(I), the parameter σ2 can be either estimated
from the data together with other parameters or be fixed at a certain value. For the
sparse FRAME model to be reviewed later, σ2 can be interpreted as the variance
of the residual image of the sparse coding representation, and σ2 is often set at
a small value. For the dense FRAME model or the deep FRAME model to be
reviewed later, the choice of σ2 is not very critical, because the exponential tilting
can be very flexible.

3.2. Maximum likelihood learning

The basic learning algorithm estimates the parameters w = (wk,x,∀k, x) from a
set of aligned training images {Ii, i = 1, ..., n} that come from the same category,
where n is the total number of training images. The algorithm can be extended

10 Wu, Xie, Lu and Zhu

to learn from non-aligned images from mixed categories. The basic learning algo-
rithm seeks to maximize the log-likelihood

(9) L(w) =
1

n

n∑
i=1

log p(Ii;w),

which is a concave function, whose partial derivatives are

(10)
∂L(w)

∂wk,x
=

1

n

n∑
i=1

h(〈Ii, Bk,x〉)− Ew [h(〈I, Bk,x〉)] ,

where Ew denotes expectation with respect to p(I;w) in (7). The key to the above
identify is that ∂ logZ(w)/∂wk,x = Ew [h(〈I, Bk,x〉)]. This expectation can be ap-
proximated by Monte Carlo integration. Thus,w can be computed by the stochastic
gradient ascent algorithm [72, 92]

(11) w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉)

]
,

where γt is the step size or the learning rate, and {Ĩi, i = 1, ..., ñ} are the syn-
thetic images sampled from p(I;w(t)) using MCMC, such as Hamiltonian Monte
Carlo [64] or the Gibbs sampler [27]. ñ is the total number of independent par-
allel Markov chains that sample from p(I;w(t)). We initialize the learning from
w(0) = 0, and the initial synthetic images are sampled from q(I), i.e., the Gaussian
white noise images. By gradually updating the parameters, the distribution of the
synthetic images becomes closer to the distribution of the observed images.

3.3. Generative boosting

Model (7) is a dense model in that all the wavelets (or filters) in the dictionary are
included in the model. We can sparsify the model by forcing most of the wk,x to be
zero, so that only a small number of wavelets are included in the model. This can
be achieved by a generative version [89] of the epsilon-boosting algorithm [25, 23]
(see also [22, 10, 83, 85]). The algorithm starts from w = 0, the zero vector. At
the t-th iteration, let

∆k,x =
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉)(12)

Sparse and Deep Generalizations of the FRAME Model 11

be the Monte Carlo estimate of ∂L(w)/∂wk,x, where again {Ĩi, i = 1, ..., ñ} are
the synthetic images sampled from the current model. We select

(k̂, x̂) = arg max
k,x

∆k,x,(13)

and update wk̂,x̂ by

w
(t+1)

k̂,x̂
= w

(t)

k̂,x̂
+ γt∆k̂,x̂,(14)

where γt is the step size at the t-th step, which is assumed to be sufficiently small
(thus the term “epsilon” in the epsilon-boosting algorithm). We call this algorithm
generative epsilon boosting because the derivatives are estimated by images gener-
ated from the current model. See Figure 2 for an illustration. The training images
are of the size 100 × 100, whose intensities are within [0, 255]. We fix σ2 = 1 in
the reference distribution q.

The selected waveletBk̂,x̂ reveals the dimension along which the current model
is most conspicuously lacking in reproducing the statistical properties of the train-
ing images. By including Bk̂,x̂ into the model and updating the corresponding
parameter wk̂,x̂, the model receives the most needed boost. The process is like an
artist making a painting, where Bk̂,x̂ is the stroke that is most needed to make the
painting look more similar to the observed objects.

The epsilon boosting algorithm [25, 36] has an interesting relationship with
the `1 regularization in the Lasso [78] and basis pursuit [5]. As pointed out by
[73], under a monotonicity condition (e.g., the components of w keep increasing),
such an algorithm approximately traces the solution path of the `1 regularized
minimization of

−L(w) + ρ‖w‖`1 ,(15)

where the regularization parameter ρ starts from a big value so that all the compo-
nents of w are zero, and gradually lowers itself to allow more components to be
non-zero so that more wavelets are induced into the model.

3.4. Sparse model

After selecting m wavelets, we have the following sparse FRAME model:

p(I;B, w) =
1

Z(w)
exp

 m∑
j=1

wjh(〈I, Bkj ,xj
〉)

 q(I),(16)

12 Wu, Xie, Lu and Zhu

(a) training images

(b) synthetic images

(c) sketch templates

(d) more synthetic images

Figure 2: Learning process of the generative boosting. (a) 5 observed training im-
ages (100 × 100 pixels) from which the random field model is learned. (b) a se-
quence of synthetic images generated by the learned model as more and more
wavelets are induced into the model. The numbers of the selected wavelets are
1, 20, 65, 100, 200, 500, and 800 respectively. (c) a sequence of sketch templates
that illustrate the wavelets selected from the given dictionary. The dictionary in-
cludes 4 scales of Gabor wavelets, illustrated by bars of different sizes, and 2 scales
of Difference of Gaussian (DoG) wavelets, illustrated by circles. In each template,
smaller scale wavelets appear darker than larger ones. (d) more synthetic images
independently generated from the final learned model.

where B = (Bj = Bkj ,xj
, j = 1, ...,m) is the set of wavelets selected from the

dictionary, and wj = wkj ,xj
.

In model (16), m is much smaller than D, the number of pixels. Thus, we can
represent I by

I =

m∑
j=1

cjBkj ,xj
+ ε,(17)

where C = (cj , j = 1, ...,m)> are the least square regression coefficients of I on
B = (Bj , j = 1, ...,m), i.e., C = (B>B)−1B>I, and ε is the residual image. The
distribution of C under p(I;B, w) is

(18) pC(C;w) =
1

Z(w)
exp

[
〈w, h(B>BC)〉

]
qC(C),

Sparse and Deep Generalizations of the FRAME Model 13

where qC(C) is the distribution of C under q(I), and the transformation h() is
applied element-wise. Thus, p(I;B,w) in (16) can be written as a wavelet sparse
coding model (17) and (18). The forms of (16) and (17) show that the selected
wavelets {Bj} serve as both filters and basis functions. The sparse coding form of
the model (17) and (18) is used for sampling {Ĩi} from p(I;B, w) by first sampling
C ∼ pC(C;w) using the Gibbs sampler [27], and then generating Ĩi according to
(17).

Model (17) suggests that we can also select the wavelets by minimizing

n∑
i=1

‖Ii −
m∑
j=1

ci,jBkj ,xj
‖2,(19)

using a shared matching pursuit method [87]. See Figure 3 for an illustration. We
can also allow the selected wavelets to perturb their locations and orientations to
account for shape deformations [84].

(a) sketch templates

(b) reconstructed images

Figure 3: Shared matching pursuit for the purpose of wavelet selection. (a) se-
quence of sketch templates that illustrate the wavelets selected sequentially in or-
der to reconstruct all the training images simultaneously. The selected wavelets are
shared by all the training images (100 × 100) in their reconstructions. The num-
bers of selected wavelets in the sequence are 2, 20, 60, 100, 200, 500, and 800
respectively. (b) sequences of reconstructed images by the selected wavelets for
the 1st and 3rd training images in Figure 2(a).

The sparse FRAME model can be used for unsupervised learning tasks such
as model-based clustering [21]. Extending the learning algorithm, one can learn
a codebook of multiple sparse FRAME models from non-aligned images. The
learned models can be used for tasks such as transfer learning [87, 42].

The sparse FRAME model merges two important research themes in image
representation and modeling, namely, Markov random fields [2, 28] and wavelet

14 Wu, Xie, Lu and Zhu

sparse coding [67, 19].
The wavelets can be mapped to the first layer filters of a ConvNet [53] to be

described below. The sparse FRAME models can be mapped to the second layer
nodes of a ConvNet, except that the sparse FRAME versions of the second layer
nodes are selectively and sparsely connected to the first layer nodes.

4. Deep FRAME

In the deep FRAME model, the filters are non-linear filters in a pre-trained Con-
vNet. We shall first review the ConvNet and then present the deep FRAME model.

4.1. ConvNet

The convolutional neural network (CNN or ConvNet) [53] is a specialized neural
network devised for analyzing signals such as images, where the linear transforma-
tions take place around each pixel, i.e., they are filters or convolutions. See Figure
4 for an illustration.

Figure 4: Convolutional neural networks consist of multiple layers of filtering
and sub-sampling operations for bottom-up feature extraction, resulting in mul-
tiple layers of feature maps and their sub-sampled versions. The top layer features
are used for classification via multinomial logistic regression. The discriminative
direction is from image to category, whereas the generative direction is from cate-
gory to image.

A ConvNet consists of multiple layers of linear filtering and point-wise non-

Sparse and Deep Generalizations of the FRAME Model 15

linear transformation, as expressed by the following recursive formula:

[F
(l)
j ∗ I](y) = h

Nl−1∑
k=1

∑
x∈Sl

w
(l,j)
k,x [F

(l−1)
k ∗ I](y + x) + bl,j

 ,(20)

or

I
(l)
j (y) = h

Nl−1∑
k=1

∑
x∈Sl

w
(l,j)
k,x I

(l−1)
k (y + x) + bl,j

 ,(21)

where l = 1, ..., L indexes the layer, and I
(l)
j = F

(l)
j ∗ I are filtered images or

feature maps at layer l. In Figure 4, the feature maps are illustrated by the square
shapes. Each [F

(l)
j ∗I](x) is called a filter response or a feature extracted by a node

or a unit at layer l.
{F (l)

j , j = 1, ..., Nl} are the filters at layer l, and {F (l−1)
k , k = 1, ..., Nl−1}

are the filters at layer l − 1. j and k are used to index the filters at layers l and
l − 1 respectively, and Nl and Nl−1 are the numbers of filters at layers l and l − 1
respectively. The filters are locally supported, so the range of x in

∑
x is within a

local support Sl (such as a 7×7 image patch). We let I(0) = I. The filter responses
at layer l are computed from the filter responses at layer l − 1, by linear filtering
defined by the weights w(l,j)

k,x as well as the bias term bl,j , followed by the non-
linear transformation h(). The most commonly used non-linear transformation in
the modern ConvNets is the rectified linear unit (ReLU) [51],

h(r) = max(0, r).(22)

{F (l)
j } are non-linear filters because we incorporate h() in the computation of the

filter responses. We call I(l)j = F
(l)
j ∗ I the filtered image or the feature map of

filter j at layer l. We denote I(l) = (I
(l)
j , j = 1, ..., Nl), which consists of a total

of Nl feature maps at layer l, and j = 1, ..., Nl. Sometimes, people call I(l) as a
whole feature map or filter image with Nl channels, where each I

(l)
j corresponds

to one channel. For a colored image, I(0) = I has 3 channels for RGB.
The filtering operations are often followed by sub-sampling and local-max

pooling (e.g., I(x1, x2) ← max(s1,s2)∈{0,1}2 I(2x1 + s1, 2x2 + s2)). See Figure 4
for an illustration of sub-sampling. After a number of layers with sub-sampling, the
filtered images or feature maps are reduced to 1×1 at the top layer. These features
are then used for classification (e.g., does the image contain a hummingbird or a
seagull or a dog) via multinomial logistic regression.

16 Wu, Xie, Lu and Zhu

4.2. FRAME with ConvNet filters

Instead of using linear filters as in the original FRAME model, we can use the
filters at a certain convolutional layer of a pre-learned ConvNet. We call such a
model the deep FRAME model.

Suppose there exists a bank of filters {F (l)
k , k = 1, ...,K} at a certain convo-

lutional layer l of a pre-learned ConvNet, as recursively defined by (20). For an
image I defined on the image domain D, let F (l)

k ∗ I be the feature map of filter
F

(l)
k , and let [F

(l)
k ∗ I](x) be the filter response of I to F (l)

k at position x (again
x is a two-dimensional coordinate). We assume that [F

(l)
k ∗ I](x) is the response

obtained after applying the non-linear transformation or rectification function h()
in (22). Then the non-stationary deep FRAME model becomes

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x)

]
q(I),(23)

where q(I) is again the Gaussian white noise model (8) , andw = (wk,x,∀k, x) are
the unknown parameters to be learned from the training data. Model (23) shares
the same form as model (7) with linear filters, except that the rectification function
h(r) = max(0, r) in model (7) is already absorbed in the ConvNet filters {F (l)

k }
in model (23). We can also make model (23) stationary by letting wk,x = wk for
all x.

4.3. Learning and sampling

The basic learning algorithm estimates the unknown parameters w from a set of
aligned training images {Ii, i = 1, ..., n} that come from the same object category.
Again the weight parameters w can be estimated by maximizing the log-likelihood
function, which is a concave function, and w can be computed by the stochastic
gradient ascent algorithm [92]:

(24) w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

[F
(l)
k ∗ Ii](x)− 1

ñ

ñ∑
i=1

[F
(l)
k ∗ Ĩi](x)

]

for every k ∈ {1, ...,K} and x ∈ D, where γt is the learning rate, and {Ĩi, i =
1, ..., ñ} are the synthetic images sampled from p(I;w(t)) using MCMC. This is
an analysis by synthesis scheme that seeks to match the average filter responses of
the synthetic images to those of the observed images.

Sparse and Deep Generalizations of the FRAME Model 17

In order to sample from p(I;w), we adopt the Langevin dynamics [56, 30].
Writing the energy function

U(I, w) = −
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x) +

1

2σ2
||I||2,(25)

the Langevin dynamics iterates

Iτ+1 = Iτ − δU ′(Iτ , w) +
√

2δετ ,(26)

whereU ′(I, w) = ∂U(I, w)/∂I. This gradient can be computed by back-propagation.
In (26), δ is a small step-size, and ετ ∼ N(0, ID), independently across τ , where
ID is the identity matrix of dimension D = |D|, i.e., the dimensionality of I. ετ
is a Gaussian white noise image whose pixel values follow N(0, 1) independently.
Here we use τ to denote the time steps of the Langevin sampling process, because
t is used for the time steps of the learning process. The Langevin sampling process
(26) is an inner loop within the learning process (24). Between every two consec-
utive updates of w in the learning process, we run a finite number of steps of the
Langevin dynamics starting from the images generated by the previous iteration of
the learning algorithm.

The Langevin dynamics was first applied to the FRAME model by [97], where
the gradient descent component is interpreted as the Gibbs Reaction And Diffusion
Equation (GRADE), and the patterns are formed via the reactions and diffusions
controlled by different types of filters.

Again we initialize the learning algorithm from w(0) = 0, and the initial syn-
thesized images are sampled from q(I), i.e., the white noise images.

Figure 5: Generating object patterns. In each row, the left half displays 4 of the
training images (224 × 224), and the right half displays 4 of the synthetic images.
In the last row, the learned model generates hybrid patterns of lion and tiger.

18 Wu, Xie, Lu and Zhu

We first learn a non-stationary FRAME model (23) from images of aligned
objects of the same pose. The images were collected from the internet. For each
category, the number of training images was around 10. We used ñ = 16 parallel
chains for Langevin sampling with 100 Langevin steps between every two con-
secutive updates of the parameters. Figure 5 shows some experiments using filters
from the 3rd convolutional layer of the VGG ConvNet [76], a commonly used
pre-learned ConvNet trained on Imagenet ILSVRC2012 dataset [12]. For each ex-
periment on each row, the left half displays 4 of the training images, and the right
half displays 4 of the synthetic images generated by the Langevin dynamics. The
last experiment is about learning the hybrid pattern of lion and tiger. The model
re-mixes local image patterns seamlessly.

Figure 6: Generating texture patterns. For each category, the first image (224 ×
224) is the training image, and the next 2 images are generated images, except for
the last 3 images, where the first 2 are the training images, and the last one is the
generated image that mixes brick wall and ivy.

Figure 6 shows results from experiments on the stationary model for texture
images. The model does not require image alignment. It re-shuffles the local pat-
terns seamlessly. Each experiment is illustrated by 3 images, where the first image
is the training image, and the other 2 images are generated by the learning algo-
rithm. In the last 3 images, the first 2 images are training images, and the last image
is generated by the learned model that mixes the patterns of brick wall and ivy.

4.4. Learning a new layer of filters

On top of the existing pre-learned convolutional layer of filters {F (l)
k , k = 1, ...,K},

we can build another layer of filters {F (l+1)
j , j = 1, ..., J}, according to the recur-

sive formula (20), so that

[F
(l+1)
j ∗ I](y) = h

∑
k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

 ,(27)

Sparse and Deep Generalizations of the FRAME Model 19

where h(r) = max(0, r). The set {F (l+1)
j } is like a dictionary of “words” to

describe different types of objects or patterns in the training images.

Due to the recursive nature of ConvNet, the deep FRAME model (23) based
on filters {F (l)

k } corresponds to a single filter in {F (l+1)
j } at a particular position

y (e.g., the origin y = 0) where we assume that the object appears. In [8], we
show that the rectification function h(r) = max(0, r) can be justified by a mixture
model where the object can either appear at a position or not. The bias term is
related to − logZ(w).

Model (23) is used to model images where the objects are aligned and are of
the same category. For images of non-aligned objects from multiple categories,
we can extend model (23) to a convolutional version with a whole new layer of
multiple filters

p(I;w) =
1

Z(w)
exp

 J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x)

 q(I),(28)

where {F (l+1)
j } are defined by (27). This model is a product of experts model

[38, 74], where each [F
(l+1)
j ∗ I](x) is an expert about a mixture of an activation or

inactivation of an object of type j at position x. The stationary model for textures
(in Figure 6) is a special case of this model.

Suppose we observe images of non-aligned patterns {Ii, i = 1, ..., n}, and we
want to learn a new layer of filters {F (l+1)

j , j = 1, ..., J} by fitting the model (28)

with (27) to the observed images, where {F (l+1)
j }model different types of patterns

in these images. This is an unsupervised learning problem because we do not know
where the patterns are. The model can still be learned by the analysis by synthesis
scheme as before.

Let L(w) = 1
n

∑n
i=1 log p(Ii;w) be the log-likelihood where p(I;w) is de-

fined by (28) and (27). Then the gradient ascent learning algorithm is based on

(29)

∂L(w)

∂w
(j)
k,x

=
1

n

n∑
i=1

∑
y∈D

sj,y(Ii)[F
(l)
k ∗ Ii](y + x)

− Ew

∑
y∈D

sj,y(I)[F
(l)
k ∗ I](y + x)

 ,

20 Wu, Xie, Lu and Zhu

where

(30) sj,y(I) = h′

∑
k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

is a binary on/off detector of object j at position y on image I, because for h(r) =

max(0, r), h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r > 0. The gradient (29) admits
an EM [11] interpretation which is typical in unsupervised learning algorithms
that involve hidden variables. Specifically, sj,y() detects the pattern of type j that
is modeled by F (l+1)

j at location y. This step can be considered a hard-decision

E-step. With the patterns detected, the parameters of F (l+1)
j are then refined in

a similar way as in (24), which can be considered the M-step. That is, we learn
F

(l+1)
j only from image patches where patterns of type j are detected.

For this model as well as the models in the subsequent sections, the log-
likelihood is not concave anymore, thus the maximum likelihood learning algo-
rithm will converge to a local maximum. Adopting the common practice of train-
ing neural networks, we initialize the learning algorithm from small parameter
values sampled from a Gaussian white noise distribution with small variance, and
update the parameters by stochastic gradient ascent. The synthesized images are
again initialized from the Gaussian white noise distribution q(I).

Figure 7: Learning a new layer of filters without requiring object bounding boxes
or image alignment. For each experiment, the first image (224 × 224) is the train-
ing image, and the next 2 images are generated by the learned model.

Figure 7 displays two experiments. In each experiment, the first image (224
× 224) is the training image, and the rest 2 images are generated by the learned
model. In the first scenery experiment, we learn 10 filters at the 4th convolutional
layer, based on the pre-trained VGG filters at the 3rd layer. The size of each Conv4
filter to be learned is 11× 11× 256. In the second sunflower experiment, we learn
20 filters of size 7×7×256. Clearly these learned filters capture the local patterns
and re-shuffle them seamlessly.

Sparse and Deep Generalizations of the FRAME Model 21

4.5. Deep convolutional energy-based model

Instead of relying on the pre-trained filters from an existing ConvNet, we can also
learn the filters {F (l)

k , k = 1, ...,K} themselves. The resulting model is a deep
convolutional energy-based model [66, 8, 90],

p(I;w) =
1

Z(w)
exp[f(I;w)]q(I),(31)

where f(I;w) is defined by a ConvNet. In model (28) with (27), we have

f(I;w) =

J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x).(32)

Using more compact notation, we can define f(I;w) recursively by

I(l) = h(wlI
(l−1) + bl),(33)

for l = 1, ..., L, where h() is applied element-wise. I(0) = I, and f(I;w) = I(L).
I(l) consists of all the filtered images or feature maps at layer l, and the rows of
wl consist of all the filters as well as all the locations where the filters operate on
I(l−1) to extract the features in I(l). We assume that at the final layer L, I(L) is
reduced to a number (i.e., a 1× 1 feature map). w = (wl, bl, l = 1, ..., L). We can
compare the compact equation (33) with the more detailed equation (21).

For piecewise linear h(), such as h(r) = max(0, r), the function f(I;w) is
piecewise linear [69, 62]. Specifically, h(r) = max(0, r) = 1(r > 0)r, where
1(r > 0) is the indicator function that returns 1 if r > 0 and 0 otherwise. Then

I(l) = sl(I;w)(wlI
(l−1) + bl),(34)

where

sl(I;w) = diag(1(wlI
(l−1) + bl > 0)),(35)

i.e., a diagonal matrix of binary indicators (the indicator function is applied element-
wise) [69]. Let s = (sl, l = 1, ..., L) consists of indicators at all the layers, then

f(I;w) = Bs(I;w)I + as(I;w)(36)

is piecewise linear, where

Bs =

1∏
l=L

slwl,(37)

22 Wu, Xie, Lu and Zhu

and as can be similarly calculated. s(I;w) partitions the image space of I into
exponentially many pieces [69] according to the value of s(I;w). The partition
is recursive because sl(I;w) depends on sl−1(I;w). The boundaries between the
pieces are all linear. On each piece with s(I;w) = s, where s on the right hand side
denotes a particular instantiation of s(I;w), f(I;w) is a linear function f(I;w) =
BsI + as. The binary switches in s(I;w) reconfigure the linear transformation
according to (37).

f(I;w) generalizes three familiar structures in statistics:
(1) Generalized linear model (GLM). A GLM structure is a composition of a

linear combination of the input variables and a non-linear link function. A ConvNet
can be viewed as a recursion of this structure, where each component of I(l) is a
GLM transformation of I(l−1), with h being the link function.

(2) Linear spline. A one-dimensional linear spline is of the form y = β0 +∑d
k=1 βk max(0, x − ak), where ak are the knots. The ConvNet f(I;w) can be

viewed as a multi-dimensional linear spline. The number of linear pieces is expo-
nential in the number of layers [69]. Such a structure can approximate any contin-
uous non-linear function by a large number of linear pieces.

(3) CART [3] and MARS [24]. In the classification and regression tree (CART)
and the multivariate adaptive regression splines (MARS), the input domain is re-
cursively partitioned. The linear pieces mentioned above are also recursively par-
titioned according to the values of sl(I;w) for l = 1, ..., L. Moreover, MARS also
makes use of the hinge function max(0, r).

For Gaussian reference q(I), the energy function is

U(I;w) = −f(I;w) +
1

2σ2
||I||2.(38)

We can continue to use Langevin dynamics (26) to sample from p(I;w).

Figure 8: Generating texture patterns. For each category, the first image (224 ×
224) is the training image, and the rest are 2 of the images generated by the learning
algorithm.

The parameter w can be learned by the stochastic gradient ascent algorithm
[92]

(39) w(t+1) = w(t) + γt

[
1

n

n∑
i=1

∂

∂w
f(Ii;w)− 1

ñ

ñ∑
i=1

∂

∂w
f(Ĩi;w)

]
,

Sparse and Deep Generalizations of the FRAME Model 23

Figure 9: Generating object patterns. For each category, the left panel displays
100 randomly sampled training image, and the right panel displays 100 randomly
sampled synthesized images.

where again γt is the learning rate, and {Ĩi, i = 1, ..., ñ} are the synthetic images
sampled from p(I;w(t)). This is again an analysis by synthesis scheme. This step
shifts the probability density function p(I;w), or more specifically, the high prob-
ability regions or the low energy regions, from the synthetic images {Ĩi} to the
observed images {Ii}.

In the sampling step, we need to compute ∂f(I;w)/∂I. In the learning step,
we need to compute ∂f(I;w)/∂w. Both derivatives can be calculated by the chain
rule back-propagation, and they share the computations of ∂I(l)/∂I(l−1).

Our experiments show that the model is quite expressive. For example, we
learn a 3-layer model. The first layer has 100 15 × 15 filters with sub-sampling
size of 3 pixels. The second layer has 64 5× 5 filters with sub-sampling size of 1.
The third layer has 30 3× 3 filters with sub-sampling size of 1. We learn a model
(31) for each texture category from a single training image. Figure 8 displays some

24 Wu, Xie, Lu and Zhu

results. For each category, the first image is the training image, and the rest are
2 of the images generated by the learning algorithm. We use ñ = 16 parallel
chains for Langevin sampling. The number of Langevin iterations between every
two consecutive updates of parameters is 10. The training images are of the size
224 × 224, whose intensities are within [0, 255]. We fix σ2 = 1 in the reference
distribution q.

In our recent work [26], we develop a multi-grid modeling and sampling method
for learning the deep convolutional energy-based model. Figure 9 displays the re-
sults of two experiments, where in each row, the left panel consists of randomly
sampled training images, and the right panel consists of randomly sampled syn-
thetic images generated by the learned model. In the first experiment, we learn
the model from 10,000 images randomly sampled from the CelebA [57] dataset of
face images, and the image size is 64× 64. In the second experiment, we learn the
model from 73,257 training images from the SVHN dataset [65] of house numbers
collected by Google Street View. The learned models can be used for classification
and pattern completion. See [26] for details.

5. Hopfield auto-encoder

Consider the sparse FRAME model (16). Let us assume that the reference distri-
bution q(I) is white noise with mean 0 and variance σ2 = 1. The energy function
is

(40) U(I) =
1

2
‖I‖2 −

m∑
j=1

wjh(〈I, Bkj ,xj
〉).

This energy function can be multi-modal, and each local minimum Î satisfies
U ′(Î) = 0, which implies

Î =

m∑
j=1

wjh
′(〈Î, Bkj ,xj

〉)Bkj ,xj
.(41)

This reveals an auto-encoder [81, 31] hidden in the local modes:

Encoding : cj = wjh
′(〈Î, Bkj ,xj

〉),(42)

Decoding : Î =

m∑
j=1

cjBkj ,xj
,(43)

Sparse and Deep Generalizations of the FRAME Model 25

where (42) encodes Î by (cj), and (43) reconstructs Î from (cj). Bkj ,xj
serves as

both bottom-up filter in (42) and top-down basis function in (43). We call this auto-
encoder the Hopfield auto-encoder because Î is a local minimum of the energy
function (40). Hopfield [43] proposes that the local energy minima may be used
for content-addressable memory.

The Hopfield auto-encoder also presents itself in the deep convolutional energy-
based model (31) [90]. The energy function of the model is ‖I‖2/2− f(I;w). The
local minima satisfies the Hopfield auto-encoder Î = f ′(Î;w), or more specifically,

Encoding : s = s(Î;w),(44)

Decoding : Î = Bs,(45)

where s(Î;w) and Bs are defined by (35) and (37) respectively. The encoding pro-
cess is a bottom-up computation of the indicators at different layers sl = sl(I;w),
for l = 1, ..., L, where wl plays the role of filters, see equation (35). The decoding
process is a top-down computation for reconstruction, where sl plays the role of
coefficients, and wl plays the role of basis functions. See equation (37). The en-
coding process detects the patterns corresponding to the filters, and the decoding
process reconstructs the image using the detected filters as the basis functions.

The relationship between auto-encoders and energy-based models [54] has
been investigated by [80] and [77] for the restricted Boltzmann machine and its
extensions [40]. A regularized auto-encoder is a special form of score matching
estimator [45]. The Hopfield auto-encoder was first elucidated by [90].

In order to learn the parameters from training images, we may fit the Hopfield
auto-encoder using the least squares reconstruction loss. After learning by auto-
encoder, we may use MCMC-based learning to further refine the learning results,
i.e., learn to synthesize after learning to reconstruct.

6. Generator as a sampler

In order to learn the deep FRAME model (23) or the deep convolutional energy-
based model (31), we need to sample synthesized images from the current model
using MCMC such as Langevin dynamics in the analysis by synthesis scheme.
This is often time consuming. We can recruit a generator model [32] as a much
more efficient sampler that generate synthesized images via non-iterative direct
ancestral sampling.

26 Wu, Xie, Lu and Zhu

6.1. Generator model

The generator model can be considered a non-linear multi-layer generalization of
the factor analysis model. It has the following form

(46)
X ∼ N(0, Id);

Ĩ = g(X; w̃) + ε; ε ∼ N(0, σ2ID).

where X consists of d latent factors that follow N(0, 1) independently, and the
image Ĩ is obtained by a top-down ConvNet that transforms X to Ĩ. We use the
notation Ĩ to emphasize the fact that the generator model is used to generate the
synthetic images, and we use w̃ to denote the parameters of this model for synthetic
images. To generate Ĩ, we can simply generateX from its known prior distribution
N(0, Id), and then transform X to Ĩ by g(X; w̃) plus the white noise ε. This is
called ancestral sampling, which is non-iterative and does not require MCMC.
The prior distribution N(0, Id) is the same as the original factor analysis, which
assumes that the components of X are the latent factors that generate Ĩ, and these
factors do not need further explanation as they are independent of each other.

g(X; w̃) can be considered a recursion of factor analysis, with

X(l−1) = h(w̃lX
(l) + b̃l)(47)

for l = 1, ..., L, and w̃ = (w̃l, b̃l, l = 1, ..., L). Ĩ = X(0) = g(X; w̃), and
X(L) = X . X(l) can be interpreted as factors at layer l. Again h is a non-linear
rectification function such as h(r) = max(0, r) that is applied element-wise. In
this case, g(X; w̃) is piecewise linear, and the model becomes a piecewise linear
factor analysis.

g(X; w̃) is a top-down ConvNet [93, 18], which should be contrasted with
f(I;w) in the deep FRAME model or deep convolutional energy-based model,
which is a bottom-up ConvNet, as illustrated by the following diagram:

Top-down ConvNet Bottom-up ConvNet
latent factors features

⇓ ⇑
image image

(a) g(X; w̃) (b) f(I;w)

(48)

In the literature, the generator model is trained by methods that involve learn-
ing extra networks [32, 70, 50, 71, 61]. [34] proposes an alternating back-propagation
algorithm for learning the model from training images {Ii, i = 1, ..., n} with-
out relying on an extra network. Specifically, let q(X) be the prior distribution

Sparse and Deep Generalizations of the FRAME Model 27

of X , and let q(I|X, w̃) be the conditional distribution of I given X . Then the
marginal distribution of I is q(I; w̃) =

∫
q(X)q(I|X, w̃)dX . The log-likelihood

is L(w̃) = 1
n

∑n
i=1 log q(Ii; w̃), whose gradient can be computed based on the

following identity that underlies the EM algorithm [11]

∂

∂w̃
log q(I; w̃) = Eq(X|I,w̃)

[
∂

∂w̃
log q(I|X, w̃)

]
,(49)

where the expectation is with respect to the posterior distribution q(X|I, w̃), and
it can be approximated by Monte Carlo samples from q(X|I, w̃). This leads to the
following stochastic gradient descent algorithm [72, 92], which iterates the follow-
ing two steps. (1) Inferring the latent factorsXi from Ii for each i, given the current
w̃, by sampling from the posterior distribution q(Xi|Ii, w̃) using the Langevin dy-
namics. (2) Updating w̃ by gradient descent on

∑n
i=1 ‖Ii − g(Xi; w̃)‖2. In Step

(1), we can sample multiple copies of Xi to approximate the expectation. Step (1)
requires the computation of ∂g(X; w̃)/∂X , while step (2) requires the computa-
tion of ∂g(X; w̃)/∂w̃. Both computations can be carried out by back-propagation,
and the whole algorithm is in the form of alternating back-propagation.

Our experiments show that the generator model (learned by alternating back-
propagation) is very expressive in that it can generate realistic images, sounds and
videos. We adopt the structure of the generator network of [70, 18]. The network
g(X; w̃) has 5 layers of convolution with 5 × 5 kernels (i.e., linear superposition
with 5× 5 basis functions), with an up-sampling factor of 2 at each layer (i.e., the
basis functions are 2 pixels apart). The number of channels in the first layer is 512
(i.e., 512 translation invariant basis functions), and is decreased by a factor 2 at
each layer. There is a fully connected layer under the latent factors X . The images
are of the size 64× 64.

In the first experiment, we learn a model where X has two components, i.e.,
X = (x1, x2), and d = 2. The training data are 11 images of 6 tigers and 5 lions.
After training the model, we generate images using the learned top-down ConvNet
for (x1, x2) ∈ [−2, 2]2, where we discretize both x1 and x2 into 9 equally spaced
values. The first panel of Figure 10 displays the synthetic images on the 9 × 9
panel.

In the second experiment, we learn a model with d = 100 from 1000 face im-
ages randomly selected from the CelebA dataset [57]. The middle panel of Figure
10 displays the images generated by the learned model, where for each synthetic
image, we first generateX ∼ N(0, Id), and then transform it to the synthetic image
by the learned network g(X; w̃). The right panel displays the interpolation results.
The images at the four corners are generated by the inferred X vectors of four
images randomly selected from the training set, where for each selected image I,

28 Wu, Xie, Lu and Zhu

Figure 10: Modeling object patterns. Left: The 64 × 64 synthetic images are gen-
erated by g(X; w̃) with the learned w̃, where X = (x1, x2) ∈ [−2, 2]2, and X is
discretized into 9 × 9 values. Middle: Each synthetic image is generated by first
sampling X ∼ N(0, I100) and then generating the image by g(X; w̃) with the
learned w̃. Right: Interpolation. The images at the four corners are reconstructed
from the inferred X vectors of four images randomly selected from the training
set. Each image in the middle is obtained by first interpolating theX vectors of the
four corner images, and then generating the image by g(X; w̃).

we infer X by sampling from q(X|I, w̃). The images in the middle are obtained
by first interpolating the inferred X’s of the four corner images using the sphere
interpolation [16] and then generating the images by the learned network.

6.2. Cooperative learning

The challenge in learning the generator model from the observed images is that for
each observed image Ii, the latent factors inXi are unknown, and must be inferred.
The inference of Xi requires expensive MCMC such as Langevin dynamics. The
learning is called unsupervised because Xi is not given.

[88] proposes a cooperative learning algorithm that incorporates the genera-
tor model into the learning of the deep FRAME model or the deep convolutional
energy-based model (see also [49]). The basic idea is that we still learn the deep
FRAME model (23) (or the deep convolutional energy-based model (31)) via the
analysis by synthesis scheme. However, we recruit the generator model to jump-
start the MCMC sampling such as the Langevin dynamics that samples from the
deep FRAME model, because it is much easier to generate synthetic images from
the generator model via direct ancestral sampling. Meanwhile, we let the generator
model learn from the synthetic images, in particular, how the MCMC changes the
synthesized images.

Sparse and Deep Generalizations of the FRAME Model 29

The following diagrams explain the basic idea:

Xi

Ĩ
(t)
i Ĩ

(t+1)
i

w̃(t) w̃(t+1)

w(t)

Xi X
(t+1)
i

Ĩ
(t)
i Ĩ

(t+1)
i

w̃(t)

w̃(t) w̃(t+1)

w(t)
(50)

The diagram on the left illustrates a simple learning scheme. In each iteration, we
generate Xi from its known prior distribution N(0, Id). Then we generate Ĩ

(t)
i ∼

g(Xi; w̃
(t)) + εi according to the current generator model with parameter w̃(t), for

i = 1, ..., ñ. After that, we initialize the MCMC such as the Langevin dynamics
from Ĩ

(t)
i , and run a finite number of steps of MCMC to get Ĩ(t+1)

i by sampling
from the current deep FRAME model with parameter w(t). We then update the
deep FRAME model to w(t+1) based on {Ĩ(t+1)

i , i = 1, ..., ñ} according to (39).
Meanwhile, we update the generator model to w̃(t+1) by gradient descent on

ñ∑
i=1

‖Ĩ(t+1)
i − g(Xi; w̃)‖2,(51)

over w̃. In the above scheme, the generator model learns from the synthetic images
{Ĩi}, where for each Ĩi, the latent factors Xi are known, so that there is no need to
infer Xi, and the learning becomes a much simpler supervised learning problem.
The diagram on the right of (50) illustrates a more rigorous scheme, where we
sample X(t+1)

i from the posterior distribution q(Xi|Ĩ(t+1)
i , w̃(t)) by the Langevin

dynamics, which is initialized from the Xi generated from the prior distribution.
The interaction between the generator model and the MCMC can be illustrated

by the following diagram (assuming that the generator is of enough capacity to
approximate any distribution):

MCMC : P (t)
Markov transitions
−−−−−−−−−→ P (t+1)

m m

Generator : w̃(t)
Parameter updating

−−−−−−−−−→ w̃(t+1)

(52)

In each iteration t, the generator provides a fresh new batch {Ĩ(t)i , i = 1, ..., ñ}.
We then run a finite number of MCMC transitions from {Ĩ(t)i , i = 1, ..., ñ} to

30 Wu, Xie, Lu and Zhu

obtain {Ĩ(t+1)
i , i = 1, ..., ñ}. After that, we let the generator model reconstruct

{Ĩ(t+1)
i , i = 1, ..., ñ}, with essentially known Xi that generates Ĩ(t)i , as illustrated

by the diagrams in (50), in order for the generator to shift its density from P (t),
which is the distribution of {Ĩ(t)i }, to P (t+1), which is the distribution of {Ĩ(t+1)

i }.
In the above learning scheme, the deep FRAME model and the generator

model cooperate with each other like a teacher and a student, where the deep
FRAME model plays the role of the teacher, and the generator model plays the
role of the student. It is as if the student writes up the initial draft of the paper. The
teacher then revises it. After that, the teacher learns from the outside review, while
the student learns from how the teacher revises the initial draft.

Figure 11: Generating texture patterns. For each category, the first image (224
× 224) is the training image, and the rest are 3 of the images generated by the
cooperative learning algorithm.

Figure 12: Generating object patterns. For each object category, the first 3 images
(64 × 64) are 3 of the training images, and the rest are 3 of the images generated
by the cooperative learning algorithm.

[88] provides a theoretical understanding of the cooperative learning algo-
rithm. The learning of the deep FRAME model p(I;w) follows a modified version
of the contrastive divergence method [38], where the generator q(Ĩ; w̃) provides
examples to initialize MCMC sampling of p(I;w). The update of the generator
q(Ĩ; w̃) seeks to approximate the Markov transition from Ĩ

(t)
i to Ĩ

(t+1)
i , more specif-

ically, q(Ĩ; w̃) seeks to be the stationary distribution of this Markov transition, and
the stationary distribution is nothing but p(I;w). If the generator has infinite learn-
ing capacity, then it will replicate the deep FRAME model perfectly. The analysis
of the more realistic situation where there is discrepancy between the generator
model and the deep FRAME model is much more complicated, which we shall
study in our future work.

Sparse and Deep Generalizations of the FRAME Model 31

Figure 11 displays the results of learning texture patterns. Figure 12 displays
the results of learning object patterns.

We then conduct an experiment on synthesizing images of categories from
MIT places205 dataset [94]. We adopt a 4-layer network for f(I;w). The first
layer has 64 5 × 5 filters with sub-sampling of 2 pixels, the second layers has
128 3 × 3 filters with sub-sampling of 2, the third layer has 256 3 × 3 filters with
sub-sampling of 1, and the final layer is a fully connected layer with 100 channels
as output. We continue to use the structure of the generator network of [70, 18].
We set the number of Langevin dynamics steps in each learning iteration to 10.
For each category, we learn f(I;w) and g(X; w̃) from all the 10,000+ images in
this category where we resize the images to 64×64. We run about 1000 iterations.
Figure 13 displays the results for two categories, where for each category, we show
144 randomly sampled observed images on the left, and 144 randomly sampled
synthetic images generated by our method on the right.

7. Adversarial interpretation

The deep convolutional energy-based model (31) can be written as

p(I;w) =
1

Z(w)
exp[−U(I;w)],(53)

where the energy function U(I;w) = −f(I;w) + 1
2σ2 ||I||2. The update of w is

based on L′(w) which can be approximated by

∂

∂w

[
1

ñ

ñ∑
i=1

U(Ĩi;w)− 1

n

n∑
i=1

U(Ii;w)

]
,(54)

where {Ĩi, i = 1, ..., ñ} are the synthetic images that are generated by the Langevin
dynamics. At the zero temperature limit, the Langevin dynamics becomes gradient
descent:

(55) Ĩτ+1 = Ĩτ − δ
∂

∂Ĩ
U(Ĩτ ;w).

Consider the value function

V (Ĩi, i = 1, ..., ñ;w) =
1

ñ

ñ∑
i=1

U(Ĩi;w)− 1

n

n∑
i=1

U(Ii;w).(56)

32 Wu, Xie, Lu and Zhu

Figure 13: Generating scene images (64 × 64). For each category, the left panel
consists of randomly sampled training images. The right panel consists of ran-
domly sampled synthetic images generated by the learned models. The categories
are from MIT places205 dataset.

Sparse and Deep Generalizations of the FRAME Model 33

The updating ofw is to increase V by shifting the low energy regions from the syn-
thetic images {Ĩi} to the observed images {Ii}, whereas the updating of {Ĩi, i =
1, ..., ñ} is to decrease V by moving the synthetic images towards the low energy
regions. This is an adversarial interpretation of the learning and sampling algo-
rithm [91]. It can also be considered as a generalization of the herding method
[82] for the exponential family models to general energy-based models.

If we recruit a generator model g(X; w̃) as a sampler, then the energy-based
model and the generator model play a minimax game with the value function

V (w̃;w) = Ew̃[U(Ĩ;w)]− Edata[U(I;w)],(57)

where Ew̃ is the expectation with respect to the generator model with parameter
w̃, and Edata[U(I;w)] = 1

n

∑n
i=1 U(Ii;w). This is related to [1].

8. Discussion

This paper reviews the sparse and deep generalizations of the FRAME model, and
explains an auto-encoding structure and an adversarial interpretation.

Besides the FRAME model and its generalizations, there are other generative
models, such as deep Boltzmann machines [41, 75, 55], auto-regressive models
[68, 15, 16]. As to the generator network, it can also be learned by generative
adversarial learning [70, 13, 6, 1], or variational auto-encoder [50, 71, 61], or the
wake-sleep algorithm [39].

Recently an introspective learning method has been proposed by [52, 46], by
generalizing Tu’s original proposal in 2007 [79] to deep neural networks. This
method learns a deep energy-based model by training a discriminative model. The
discriminative model seeks to tell apart the synthesized examples generated by the
current energy-based model from the real examples. The learned discriminative
model can then be used to update the energy-based model so that it can generate
new synthesized examples to pass the discriminative model. Repeating this process
enables learning of both discriminative and generative models.

While the sparse FRAME model is interpretable in terms of symbolic sketch
of the images, the deep FRAME model is not interpretable with its multiple layers
of dense connections in linear filtering. Perhaps the non-interpretability of the deep
ConvNets is a fact we have to live with, very much like we find peace with quan-
tum mechanics with its unitary linear evolution of the wave function and non-linear
probabilistic collapsing of the wave function at measurement, as long as it is math-
ematically consistent and it gives correct predictions. The dense connections may
be doing some implicit form of Bayesian model averaging without explicitly infer-
ring latent variables whose uncertainties may be too large to be worthy of explicit

34 Wu, Xie, Lu and Zhu

inference, especially at the lower layers. On the other hand, at the higher layers,
sparse connections and symbolic representations, as well as grammatical under-
standing [98] and logical reasoning, may naturally emerge, as the uncertainties
become smaller. It would be interesting to find out how such sparse and symbolic
representations arise from dense continuous representations.

Another aspect of the ConvNet is that it blurs the boundary between repre-
sentation and computation. While the nodes in the ConvNet may represent cer-
tain features or non-linear dimensions in the data, a ConvNet may also encode a
computational algorithm. For example, in the cooperative learning algorithm, we
may consider the generator model as encoding a non-iterative sampling algorithm
that reproduces the iterative MCMC sampling by accumulating and memorizing
the effect of MCMC transitions. As another example, the variational auto-encoder
method recruits an inference ConvNet that maps the image to the latent factors.
This inference ConvNet actually encodes the computation of the posterior sam-
pling of the latent factors. It appears that we not only learn the models with the
ConvNet, we can also learn the computations in sampling and inference with the
ConvNet.

A most surprising fact about the ConvNet is that even though the learning ob-
jective function is highly non-convex, the simple stochastic gradient descent algo-
rithm works very well in practice. Because each iteration of the stochastic gradient
only requires operating on a mini-batch, it can easily scale up to big data. Even
though the stochastic gradient can only hope to get close to a local minima, this
may actually be an advantage in the sense that the local modes and the randomness
or noises may provide regularization to avoid over-fitting. Our current theoretical
understanding of this issue is still rather limited, despite of some recent progresses
[62, 7, 35]. It is our hope that some mathematically minded readers of this paper
may offer some theoretical insights into this issue.

Acknolwedgment

The work is supported by NSF DMS 1310391, DARPA SIMPLEX N66001-15-C-
4035, ONR MURI N00014-16-1-2007, and DARPA ARO W911NF-16-1-0579.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[2] Julian Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society. Series B (Methodological), pages
192–236, 1974.

Sparse and Deep Generalizations of the FRAME Model 35

[3] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

[4] Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional
sparse coding. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 391–398, 2013.

[5] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic
decomposition by basis pursuit. SIAM Journal on Scientific Computing,
20(1):33–61, 1998.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in Neural Information
Processing Systems (NIPS), pages 2172–2180, 2016.

[7] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous,
and Yann LeCun. The loss surface of multilayer networks. arXiv preprint
arXiv:1412.0233, 2014.

[8] Jifeng Dai, Yang Lu, and Ying Nian Wu. Generative modeling of convolu-
tional neural networks. In International Conference on Learning Represen-
tations (ICLR), 2015.

[9] John G Daugman. Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical filters.
JOSA A, 2(7):1160–1169, 1985.

[10] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing fea-
tures of random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(4):380–393, 1997.

[11] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[13] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image
models using a laplacian pyramid of adversarial networks. In Advances in
Neural Information Processing Systems (NIPS), pages 1486–1494, 2015.

[14] Persi Diaconis and David Freedman. On the statistics of vision: the julesz
conjecture. Journal of Mathematical Psychology, 24(2):112–138, 1981.

36 Wu, Xie, Lu and Zhu

[15] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516, 2014.

[16] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[17] David Leigh Donoho. Sparse components of images and optimal atomic
decompositions. Constructive Approximation, 17(3):353–382, 2001.

[18] E Dosovitskiy, J. T. Springenberg, and T Brox. Learning to generate chairs
with convolutional neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[19] M Elad, M Aharon, and AM Bruckstein. The k-svd: An algorithm for de-
signing of overcomplete dictionaries for sparse representations. IEEE Trans-
actions on Signal Processing, 15(12):3736–3745, 2006.

[20] Michael Elad. Sparse and redundant representations: from theory to appli-
cations in signal and image processing. Springer Science & Business Media,
2010.

[21] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Associ-
ation, 97(458):611–631, 2002.

[22] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[23] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic
regression: a statistical view of boosting. Annals of Statistics, 28(2):337–407,
2000.

[24] Jerome H Friedman. Multivariate adaptive regression splines. Annals of
Statistics, pages 1–67, 1991.

[25] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, 29(5):1189–1232, 2001.

[26] Ruiqi Gao, Yang Lu, Junpei Zhou, Song-Chun Zhu, and Ying Nian Wu.
Learning multi-grid generative convnets by minimal contrastive divergence.
arXiv preprint arXiv:1709.08868, 2017.

[27] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 6(6):721–741, 1984.

Sparse and Deep Generalizations of the FRAME Model 37

[28] Stuart Geman and Christine Graffigne. Markov random field image models
and their applications to computer vision. In Proceedings of the International
Congress of Mathematicians, volume 1, page 2, 1986.

[29] J Willard Gibbs. Elementary principles in statistical mechanics. Courier
Corporation, 2014.

[30] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamil-
tonian monte carlo methods. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 73(2):123–214, 2011.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems (NIPS),
pages 2672–2680, 2014.

[33] Ulf Grenander and Michael I Miller. Pattern theory: from representation to
inference. Oxford University Press, 2007.

[34] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-
propagation for generator network. In AAAI, 2017.

[35] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, gen-
eralize better: Stability of stochastic gradient descent. arXiv preprint
arXiv:1509.01240, 2015.

[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning: data mining, inference and prediction. Springer, 2009.

[37] David J Heeger and James R Bergen. Pyramid-based texture analy-
sis/synthesis. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 229–238. ACM, 1995.

[38] Geoffrey E Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8):1771–1800, 2002.

[39] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal.
The “wake-sleep” algorithm for unsupervised neural networks. Science,
268(5214):1158–1161, 1995.

[40] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[41] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18:1527–1554, 2006.

38 Wu, Xie, Lu and Zhu

[42] Yi Hong, Zhangzhang Si, Wenze Hu, Song-Chun Zhu, and Ying Nian Wu.
Unsupervised learning of compositional sparse code for natural image repre-
sentation. Quarterly of Applied Mathematics, 72:373–406, 2013.

[43] John Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sci-
ences of the United States of America, 79(8):2554–2558, 1982.

[44] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[45] Aapo Hyvärinen. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6:695–709, 2005.

[46] Long Jin, Justin Lazarow, and Zhuowen Tu. Introspective classification with
convolutional nets. In Advances in Neural Information Processing Systems,
pages 823–833, 2017.

[47] Bela Julesz. Visual pattern discrimination. IRE transactions on Information
Theory, 8(2):84–92, 1962.

[48] Bela Julesz et al. Textons, the elements of texture perception, and their inter-
actions. Nature, 290(5802):91–97, 1981.

[49] Taesup Kim and Yoshua Bengio. Deep directed generative models with
energy-based probability estimation. arXiv preprint arXiv:1606.03439,
2016.

[50] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In-
ternational Conference on Learning Representations (ICLR), 2014.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 1097–1105, 2012.

[52] Justin Lazarow, Long Jin, and Zhuowen Tu. Introspective neural networks for
generative modeling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2774–2783, 2017.

[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[54] Yann LeCun, Sumit Chopra, Rata Hadsell, Mare’Aurelio Ranzato, and Fu Jie
Huang. A tutorial on energy-based learning. In Predicting Structured Data.
MIT Press, 2006.

Sparse and Deep Generalizations of the FRAME Model 39

[55] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolu-
tional deep belief networks for scalable unsupervised learning of hierarchical
representations. In International Conference on Machine Learning (ICML),
pages 609–616, 2009.

[56] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science
& Business Media, 2008.

[57] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In IEEE International Conference on Computer Vision
(ICCV), pages 3730–3738, 2015.

[58] Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Learning FRAME models
using CNN filters. In AAAI, 2016.

[59] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing, 1993.

[60] David Marr and Tomaso Poggio. A computational theory of human stereo
vision. Proceedings of the Royal Society of London B: Biological Sciences,
204(1156):301–328, 1979.

[61] Andriy Mnih and Karol Gregor. Neural variational inference and learning in
belief networks. In International Conference on Machine Learning (ICML),
2014.

[62] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks. In Advances in
Neural Information Processing Systems (NIPS), pages 2924–2932, 2014.

[63] David Mumford and Agnès Desolneux. Pattern theory: the stochastic analy-
sis of real-world signals. CRC Press, 2010.

[64] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2, 2011.

[65] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and unsupervised feature
learning, volume 2011, page 5, 2011.

[66] Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng. Learn-
ing deep energy models. In International Conference on Machine Learning
(ICML), 2011.

[67] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete

40 Wu, Xie, Lu and Zhu

basis set: A strategy employed by v1? Vision Research, 37(23):3311–3325,
1997.

[68] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel re-
current neural networks. arXiv preprint arXiv:1601.06759, 2016.

[69] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of
response regions of deep feed forward networks with piece-wise linear acti-
vations. arXiv preprint arXiv:1312.6098, 2013.

[70] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[71] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In Ad-
vances in Neural Information Processing Systems (NIPS), pages 1278–1286,
2014.

[72] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[73] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to
a maximum margin classifier. The Journal of Machine Learning Research,
5:941–973, 2004.

[74] Stefan Roth and Michael J Black. Fields of experts: A framework for learning
image priors. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 2, pages 860–867, 2005.

[75] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In
AISTATS, 2009.

[76] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. International Conference on Learning
Representations (ICLR), 2015.

[77] Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Benjamin Marlin,
and Nando Freitas. On autoencoders and score matching for energy based
models. In International Conference on Machine Learning (ICML), pages
1201–1208, 2011.

[78] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267–288,
1996.

Sparse and Deep Generalizations of the FRAME Model 41

[79] Zhuowen Tu. Learning generative models via discriminative approaches.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8, 2007.

[80] Pascal Vincent. A connection between score matching and denoising autoen-
coders. Neural Computation, 23(7):1661–1674, 2011.

[81] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoen-
coders. In International Conference on Machine Learning (ICML), pages
1096–1103, 2008.

[82] Max Welling. Herding dynamical weights to learn. In International Confer-
ence on Machine Learning (ICML), pages 1121–1128, 2009.

[83] Max Welling, Richard S Zemel, and Geoffrey E Hinton. Self supervised
boosting. In Advances in neural information processing systems (NIPS),
pages 665–672, 2002.

[84] Ying Nian Wu, Zhangzhang Si, Haifeng Gong, and Song-Chun Zhu. Learn-
ing active basis model for object detection and recognitio. International Jour-
nal of Computer Vision, 90:198–235, 2010.

[85] Ying Nian Wu, Song-Chun Zhu, and Cheng-En Guo. From information scal-
ing of natural images to regimes of statistical models. Quarterly of Applied
Mathematics, 66:81–122, 2008.

[86] Ying Nian Wu, Song Chun Zhu, and Xiuwen Liu. Equivalence of julesz
ensembles and frame models. International Journal of Computer Vision,
38(3):247–265, 2000.

[87] Jianwen Xie, Wenze Hu, Song-Chun Zhu, and Ying Nian Wu. Learning
sparse frame models for natural image patterns. International Journal of
Computer Vision, pages 1–22, 2014.

[88] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu.
Cooperative training of descriptor and generator networks. arXiv preprint
arXiv:1609.09408, 2016.

[89] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Inducing
wavelets into random fields via generative boosting. Journal of Applied and
Computational Harmonic Analysis, 41:4–25, 2016.

[90] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of gen-
erative convnet. In International Conference on Machine Learning (ICML),
2016.

42 Wu, Xie, Lu and Zhu

[91] Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic pat-
terns by spatial-temporal generative convnet. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[92] Laurent Younes. On the convergence of markovian stochastic algorithms
with rapidly decreasing ergodicity rates. Stochastics: An International Jour-
nal of Probability and Stochastic Processes, 65(3-4):177–228, 1999.

[93] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolu-
tional networks for mid and high level feature learning. In IEEE International
Conference on Computer Vision (ICCV), pages 2018–2025, 2011.

[94] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. Learning deep features for scene recognition using places database. In
Advances in neural information processing systems (NIPS), pages 487–495,
2014.

[95] Song-Chun Zhu. Statistical modeling and conceptualization of visual pat-
terns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(6):691–712, 2003.

[96] Song-Chun Zhu, Xiuwen Liu, and Ying Nian Wu. Exploring texture ensem-
bles by efficient markov chain monte carlo - towards a “trichromacy” theory
of texture. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22:245–261, 2000.

[97] Song-Chun Zhu and David Mumford. Grade: Gibbs reaction and diffusion
equations. In IEEE International Conference on Computer Vision (ICCV),
pages 847–854, 1998.

[98] Song-Chun Zhu and David Mumford. A stochastic grammar of images. Now
Publishers Inc, 2007.

[99] Song-Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy
principle and its application to texture modeling. Neural Computation,
9(8):1627–1660, 1997.

YING NIAN WU,
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA, LOS ANGELES

JIANWEN XIE,
HIKVISION RESEARCH INSTITUTE
SANTA CLARA, CA, USA

YANG LU,
AMAZON RSML (RETAIL SYSTEM MACHINE LEARNING) GROUP

Sparse and Deep Generalizations of the FRAME Model 43

SONG-CHUN ZHU
DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA, LOS ANGELES

	Introduction
	Pattern theory and generative models
	FRAME model of texture patterns
	Sparse and deep generalizations
	Auto-encoder, adversarial interpretation, generator as sampler

	FRAME Model
	Filters and basis functions
	Sparse representation
	FRAME model

	Sparse FRAME
	Dense model
	Maximum likelihood learning
	Generative boosting
	Sparse model

	Deep FRAME
	ConvNet
	FRAME with ConvNet filters
	Learning and sampling
	Learning a new layer of filters
	Deep convolutional energy-based model

	Hopfield auto-encoder
	Generator as a sampler
	Generator model
	Cooperative learning

	Adversarial interpretation
	Discussion
	Acknolwedgment
	References

