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Abstract

Conventional saliency prediction models typically learn a de-
terministic mapping from an image to its saliency map, and
thus fail to explain the subjective nature of human attention.
In this paper, to model the uncertainty of visual saliency, we
study the saliency prediction problem from the perspective of
generative models by learning a conditional probability dis-
tribution over the saliency map given an input image, and
treating the saliency prediction as a sampling process from
the learned distribution. Specifically, we propose a generative
cooperative saliency prediction framework, where a condi-
tional latent variable model (LVM) and a conditional energy-
based model (EBM) are jointly trained to predict salient ob-
jects in a cooperative manner. The LVM serves as a fast but
coarse predictor to efficiently produce an initial saliency map,
which is then refined by the iterative Langevin revision of the
EBM that serves as a slow but fine predictor. Such a coarse-to-
fine cooperative saliency prediction strategy offers the best of
both worlds. Moreover, we propose a “cooperative learning
while recovering” strategy and apply it to weakly supervised
saliency prediction, where saliency annotations of training
images are partially observed. Lastly, we find that the learned
energy function in the EBM can serve as a refinement module
that can refine the results of other pre-trained saliency predic-
tion models. Experimental results show that our model can
produce a set of diverse and plausible saliency maps of an
image, and obtain state-of-the-art performance in both fully
supervised and weakly supervised saliency prediction tasks.

1 Introduction
As a class-agnostic segmentation task, salient object detec-
tion has attracted a lot of attentions in the computer vision
community for its close relationship to human visual per-
ception. A salient region is a visually distinctive scene re-
gion that can be located rapidly and with little human effort.
Salient object detection is commonly treated as a pixel-wise
binary output of a deterministic prediction model in most re-
cent works (Wu, Su, and Huang 2019a; Qin et al. 2019; Wu,
Su, and Huang 2019b; Wei, Wang, and Huang 2020; Wang
et al. 2019; Xu et al. 2021). Despite the success of those re-
cent models, the one-to-one deterministic mapping has pre-
vented them from modeling the uncertainty of human salient
object prediction, which is considered to be subjective (Itti,
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Koch, and Niebur 1998) and affected by biological factors
(e.g., contrast sensitivity), contextual factors (e.g., task, ex-
perience, and interest), etc. In this way, it is more reason-
able to represent visual saliency as a conditional probability
distribution over a saliency map given an input image, and
formulate the saliency prediction as a stochastic sampling
process from the conditional distribution.

Generative models (Goodfellow et al. 2014; Kingma and
Welling 2013; Xie et al. 2016, 2018a) have demonstrated
their abilities to represent conditional distributions of high-
dimensional data and produce multiple plausible outputs
given the same input (Zhu et al. 2017; Xie et al. 2021b).
In this work, we fit the saliency detection task into a gen-
erative framework, where the input image is the condition,
and the goal is to generate multiple saliency maps, represent-
ing the “subjective nature” of human visual saliency. Zhang
et al. (2020a, 2021) have used conditional variational auto-
encoders (VAEs) (Kingma and Welling 2013; Sohn, Lee,
and Yan 2015a), which are latent variable models (LVMs),
to implicitly represent distributions of visual saliency. How-
ever, VAEs only learn a stochastic mapping from image do-
main to saliency domain, and lack an intrinsic cost function
to evaluate the visual saliency output and guide the saliency
prediction process. As to a prediction task, a cost function
of solution is more reliable than a mapping function because
the former is more generalizable than the latter.

In contrast, we propose to model the conditional dis-
tribution of visual saliency explicitly via an energy-based
model (EBM) (Xie et al. 2016; Nijkamp et al. 2019), where
the energy function defined on both image and saliency
domains serves as a cost function of the saliency predic-
tion. Given an input image, the saliency prediction can be
achieved by performing sampling from the EBM via Markov
chain Monte Carlo (MCMC) (Neal 2012) method, which is
a gradient-based algorithm that searches local minima of the
cost function of the EBM conditioned on the input image.

A typical high-dimensional EBM learns an energy func-
tion by MCMC-based maximum likelihood estimation
(MLE), which commonly suffers from convergence diffi-
culty and computational expensiveness of the MCMC pro-
cess. Inspired by prior success of energy-based generative
cooperative learning (Xie et al. 2018a, 2021b), we propose
the energy-based generative cooperative saliency prediction
framework to tackle the saliency prediction task. Specifi-



cally, the framework consists of a conditional EBM whose
energy function is parameterized by a bottom-top neural net-
work, and a conditional LVM whose transformation func-
tion is parameterized by an encoder-decoder framework.
The framework brings in an LVM as an ancestral sampler
to initialize the MCMC computational process of the EBM
for efficient sampling, so that the EBM can be learned effi-
ciently. The EBM, in turn, refines the LVM’s generated sam-
ples via MCMC and feeds them back to the LVM, so that the
LVM can learn its mapping function from the MCMC tran-
sition. Thus, the resulting cooperative saliency prediction
process first generates an initial saliency map via a direct
mapping and then refines the saliency map via an iterative
process. This is a coarse-to-fine generative saliency detec-
tion, and corresponds to a fast-thinking and slow-thinking
system (Xie et al. 2021b).

Moreover, based on the generative cooperative saliency
prediction framework, we further propose a cooperative
learning while cooperative recovering strategy for weakly
supervised saliency learning, where each training image is
associated with a partially observed annotation (e.g., scrib-
ble annotation (Zhang et al. 2020b)). At each learning it-
eration, the strategy has two sub-tasks: cooperative recov-
ery and cooperative learning. As to the cooperative recov-
ery sub-task, each incomplete saliency ground truth is firstly
recovered in the low-dimensional latent space of the LVM
via inference, and then refined by being pushed to the local
mode of the cost landscape of the EBM via MCMC. For the
cooperative learning sub-task, the recovered saliency maps
are treated as pseudo labels to update the parameters of the
framework as in the scenario of learning from complete data.

In experiments, we demonstrate that our framework can
not only achieve state-of-the-art performances in both fully
supervised and weakly supervised saliency predictions, but
also generate diverse saliency maps from one input im-
age, indicating the success of modeling the uncertainty of
saliency prediction. Furthermore, we show that the learned
energy function in the EBM can serve as a cost function,
which is useful to refine the results from other pre-trained
saliency prediction models.

Our contributions can be summarized as below:

• We study generative modeling of saliency prediction, and
formulate it as a sampling process from a probabilistic
model using EBM and LVM respectively, which are new
angles to model and solve saliency prediction.

• We propose a generative cooperative saliency prediction
framework, which jointly trains the LVM predictor and
the EBM predictor in a cooperative learning scheme to
offer reliable and efficient saliency prediction.

• We generalize our generative framework to the weakly
supervised saliency prediction scenario, in which only
incomplete annotations are provided, by proposing the
cooperative learning while recovering algorithm, where
we train the model and simultaneously recover the unla-
beled areas of the incomplete saliency maps.

• We provide strong empirical results in both fully supe-
vised and weakly supervised settings to verify the effec-
tiveness of our framework for saliency prediction.

2 Related Work
We first briefly introduce existing fully supervised and
weakly supervised saliency prediction models. We then re-
view the family of generative cooperative models and other
conditional deep generative frameworks.

Fully Supervised Saliency Prediction. Existing fully su-
pervised saliency prediction models (Wang et al. 2018; Liu,
Han, and Yang 2018; Wei, Wang, and Huang 2020; Liu
et al. 2019; Qin et al. 2019; Wu, Su, and Huang 2019b,a;
Wang et al. 2019; Wang et al. 2019; Wei et al. 2020; Xu
et al. 2021) mainly focus on exploring image context infor-
mation and generating structure-preserving predictions.Wu,
Su, and Huang (2019b); Wang et al. (2019); Wang et al.
(2019); Wang et al. (2018); Liu, Han, and Yang (2018);
Liu et al. (2019); Wu, Su, and Huang (2019a); Xu et al.
(2021) propose saliency prediction models by effectively in-
tegrating higher-level and lower-level features. Wei, Wang,
and Huang (2020); Wei et al. (2020) propose an edge-aware
loss term to penalize errors along object boundaries.Zhang
et al. (2020a) present a stochastic RGB-D saliency detection
network based on the conditional variational auto-encoder
(Kingma and Welling 2013; Jimenez Rezende, Mohamed,
and Wierstra 2014). In this paper, we introduce the con-
ditional cooperative learning framework (Xie et al. 2018a,
2021b) to achieve probabilistic coarse-to-fine RGB saliency
detection, where a coarse prediction is produced by a condi-
tional latent variable model and then is refined by a condi-
tional energy-based model. Our paper is the first work to use
a deep energy-based generative framework for probabilistic
saliency detection.

Weakly Supervised Saliency Prediction. Weakly super-
vised saliency prediction frameworks (Wang et al. 2017; Li,
Xie, and Lin 2018a; Nguyen et al. 2019; Zhang et al. 2020b)
attempt to learn predictive models from easy-to-obtain weak
labels, including image-level labels (Wang et al. 2017; Li,
Xie, and Lin 2018b), noisy labels (Nguyen et al. 2019;
Zhang et al. 2018; Zhang, Han, and Zhang 2017) or scribble
labels (Zhang et al. 2020b). In this paper, we also propose
a cooperative learning while recovering strategy for weakly
supervised saliency prediction, in which only scribble labels
are provided and our model treats them as incomplete data
and recovers them during learning.

Energy-Based Generative Cooperative Networks.
Deep energy-based generative models (Xie et al. 2016),
with energy functions parameterized by modern convolu-
tional neural networks, are capable of modeling the proba-
bility density of high-dimensional data. They have been ap-
plied to image generation (Xie et al. 2016; Gao et al. 2018;
Nijkamp et al. 2019; Du and Mordatch 2019; Grathwohl
et al. 2020; Zhao, Xie, and Li 2021; Zheng, Xie, and Li
2021), video generation (Xie, Zhu, and Wu 2019), 3D vol-
umetric shape generation (Xie et al. 2018b, 2020), and un-
ordered point cloud generation (Xie et al. 2021a). The max-
imum likelihood learning of the energy-based model typi-
cally requires iterative MCMC sampling, which is compu-
tationally challenging. To relieve the computational burden
of MCMC, the Generative Cooperative Networks (Coop-
Nets) in Xie et al. (2018a) propose to learn a separate latent
variable model (i.e. a generator) to serve as an efficient ap-



proximate sampler for training the energy-based model. Xie,
Zheng, and Li (2021) propose a variant of CoopNets by re-
placing the generator with a variational auto-encoder (VAE)
(Kingma and Welling 2014). Xie et al. (2021b) propose a
conditional CoopNets for supervised image-to-image trans-
lation. Our paper proposes a conditional CoopNets for vi-
sual saliency prediction. Further, we generalize our model to
the weakly supervised learning scenario by proposing a co-
operative learning while recovering algorithm. In this way,
we can learn from incomplete data for weakly supervised
saliency prediction.

Conditional Deep Generative Models. Our framework
belongs to the family of conditional generative models,
which include conditional generative adversarial networks
(CGANs) (Mirza and Osindero 2014) and conditional varia-
tional auto-encoders (CVAEs) (Sohn, Lee, and Yan 2015a).
Different from existing CGANs (Luc et al. 2016; Zhang
et al. 2018; Xue et al. 2017; Pan et al. 2017; Yu and Cai
2018; Hung et al. 2018; Souly, Spampinato, and Shah 2017),
which train a conditional discriminator and a conditional
generator in an adversarial manner, or CVAEs (Kohl et al.
2018; Zhang et al. 2020a, 2021), in which a conditional
generator is trained with an approximate inference network,
our model learns a conditional generator with a conditional
energy-based model via MCMC teaching. Specifically, our
model allows an additional refinement for the generator dur-
ing prediction, which is lacking in both CGANs and CVAEs.

3 Cooperative Saliency Prediction
We will first present two types of generative modeling of
saliecny prediction, i.e., the energy-based model (EBM)
and the latent variable model (LVM). Then, we propose a
novel generative saliency prediction framework, in which
the EBM and the LVM are jointly trained in a generative co-
operative manner, such that they can help each other for bet-
ter saliency prediction in terms of computational efficiency
and prediction accuracy. The latter aims to generate a coarse
but fast prediction, and the former serves as a fine saliency
predictor. The resulting model is a coarse-to-fine saliency
prediction framework.

3.1 EBM as a Slow but Fine Predictor
Let X be an image, and Y be its saliency map. The EBM
defines a conditional distribution of Y given X by:

pθpY |Xq �
pθpY,Xq³
pθpY,XqdY

�
expr�UθpY,Xqs

ZpX; θq
, (1)

where the energy function UθpY,Xq, parameterized by a
bottom-up neural network, maps the input image-saliency
pair to a scalar, and θ represent the network parameters.
ZpX; θq �

³
expr�UθpY,XqsdY is the normalizing con-

stant. When Uθ is learned and an image X is given, the pre-
diction of saliency Y can be achieved by Langevin sampling
(Neal 2012), which makes use of the gradient of the energy
function and iterates the following step:

Yτ�1 � Yτ �
δ2

2

B

BY
UθpYτ , Xq � δ∆τ , (2)

where τ indexes the Langevin time step, δ is the step size,
and ∆τ � N p0, IDq is a Gaussian noise term. The Langevin
dynamics (Neal 2012) is initialized with Gaussian distribu-
tion and is equivalent to a stochastic gradient descent algo-
rithm that seeks to find the minimum of the objective func-
tion defined by UθpY,Xq. The noise term ∆τ is a Brownian
motion that prevents gradient descent from being trapped by
local minima of UθpY,Xq. The energy function UθpY,Xq
in Eq. (1) can be regarded as a trainable cost function of
the task of saliency prediction. The prediction process via
Langevin dynamics in Eq. (2) can be considered as find-
ing Y to minimize the cost UθpY,Xq given an input X .
Such a framework can learn a reliable and generalizable cost
function for saliency prediction. However, due to the itera-
tive sampling process in the prediction, EBM is slower than
LVM, which adopts a mapping for direct sampling.

3.2 LVM as a Fast but Coarse Predictor
Let h be a latent Gaussian noise vector. The LVM defines a
mapping function GαpX,hq : rh,Xs Ñ Y that maps a la-
tent vector h � N p0, Idq together with an image X to
a saliency map Y . Id is a d-dimensional identity matrix.
d is the number of dimensionalities of h. Specifically, the
mapping function G is parameterized by a noise-injected
encoder-decoder network with skip connections and α con-
tain all the learning parameters in the network. The LVM
is given by:

Y � GαpX,hq � ε, ε � N p0, σ2IDq, (3)

where ε is an observation residual and σ is a predefined
standard deviation of ε. The LVM in Eq. (3) defines an
implicit conditional distribution of saliency Y given an
image X , i.e., pαpY |Xq �

³
pαpY |X,hqpphqdh, where

pαpY |X,hq � N pGαpX,hq, σ
2IDq. The saliency predic-

tion can be achieved by an ancestral sampling process that
first samples a Gaussian white noise vector h and then trans-
forms it along with an image X to a saliency map Y . Since
the ancestral sampling is a direct mapping, it is faster than
the iterative Langevin dynamics in the EBM. However, with-
out a cost function as in the EBM, the learned mapping in the
LVM is hard to be generalized to a new domain.

3.3 Cooperative Prediction with Two Predictors
We propose to predict image saliency by a cooperative sam-
pling strategy. We first use the coarse saliency predictor
(LVM) to generate an initial prediction Ŷ via a non-iterative
ancestral sampling, and then we use the fine saliency pre-
dictor (EBM) to refine the initial prediction via K-step
Langevin revision to obtain a revised saliency Ỹ . The pro-
cess can be written as:

Ŷ � GαpX, ĥq, ĥ � N p0, Idq,#
Ỹ0 � Ŷ

Ỹτ�1 � Ỹτ �
δ2

2
B
BỸ
UθpỸτ , Xq � δ∆τ

(4)

We call this process the cooperative sampling-based coarse-
to-fine prediction. In this way, we take both advantages
of these two saliency predictors in the sense that the fine



saliency predictor (i.e., Langevin sampler) is initialized by
the efficient coarse saliency predictor (i.e., ancestral sam-
pler), while the coarse saliency predictor is refined by the
accurate fine saliency predictor that aims to minimize a cost
function Uθ.

Since our conditional model represents a one-to-many
mapping, the prediction is stochastic. To evaluate the learned
model on saliency prediction tasks, we can draw multiple ĥ
from the prior N p0, Idq and use their average to generate Ŷ ,
then a Langevin dynamics with the diffusion term being dis-
abled (i.e., gradient descent) is performed to push Ŷ to its
nearest local minimum Ỹ based on the learned energy func-
tion. The resulting Ỹ is treated as a prediction of our model.

3.4 Cooperative Training of Two Predictors
We use the cooperative training method (Xie et al. 2018a,
2021b) to learn the parameters of the two predictors. At each
iteration, we first generate synthetic examples via the coop-
erative sampling strategy shown in Eq. (4), and then the syn-
thetic examples are used to compute the learning gradients
to update both predictors. We present the update formula of
each predictor below.

MCMC-based Maximum Likelihood Estimation
(MLE) for the Fine Saliency Predictor. Given a training
dataset tpXi, Yiqu

n
i�1, we train the fine saliency predictor

via MLE, which maximizes the log-likelihood of the data
Lpθq � 1

n

°n
i�1 log pθpYi|Xiq, whose learning gradient is

∆θ � 1
n

°n
i�1tEpθpY |Xiqr

B
BθUθpY,Xiqs �

B
BθUθpYi, Xiqu.

We rely on the cooperative sampling in Eq. (4) to sample
Ỹi � pθpY |Xiq to approximate the gradient:

∆θ �
1

n

ņ

i�1

B

Bθ
UθpỸi, Xiq �

1

n

ņ

i�1

B

Bθ
UθpYi, Xiq. (5)

We can use Adam (Kingma and Ba 2015) with ∆θ to update
θ. We denote ∆θptYiu, tỸiuq as a function of tYiu and tỸiu.

Maximum Likelihood Training of the Coarse Saliency
Predictor by MCMC Teaching. Even though the fine
saliency predictor learns from the training data, the coarse
saliency predictor learns to catch up with the fine saliency
predictor by treating tpX, Ỹ quni�1 as training examples.
The learning objective is to maximize the log-likelihood
of the samples drawn from pθpY |Xq, i.e., Lpαq �
1
n

°n
i�1 log pαpỸi|Xiq, whose gradient can be computed by

∆α �
ņ

i�1

Eh�pαph|Yi,Xiq
�
B

Bα
log pαpYi, h|Xiq

�
. (6)

This leads to an MCMC-based solution that iterates (i) an
inference step: inferring latent h̃ by sampling from posterior
distribution h̃ � pαph|Y,Xq via Langevin dynamics, which
iterates the following:

h̃τ�1 � h̃τ �
δ2

2

B

Bh̃
log pαpY, h̃τ |Xq � δ∆τ , (7)

where ∆τ � N p0, Idq and B
Bh̃

log pαpY, h̃|Xq � 1
σ2 pY �

GαpX, h̃qq
B
Bh̃
GαpX, h̃q � h̃, and (ii) a learning step: with

th̃i, Ỹi, Xiu, we update α via Adam optimizer with

∆α �
1

n

ņ

i�1

1

σ2
pỸi �GαpXi, h̃iqq

B

Bα
GαpXi, h̃iq. (8)

Since Gα is parameterized by a differentiable neural net-
work, both B

BhGαpX,hq in Eq. (7) and B
BαGαpXi, h̃iq in

Eq. (8) can be efficiently computed by back-propagation. We
denote ∆αpth̃iu, tỸiuq as a function of th̃iu and tỸiu. Al-
gorithm 1 presents a description of the cooperative learning
algorithm of the fine and coarse saliency predictors.

Algorithm 1: Training the Cooperative Saliency Predictor
Input:
(1) Training images tXiuni with associated saliency maps tYiuni ;
(2) maximal number of learning iterations T .
Output: Parameters θ and α
1: Initialize θ and α with Gaussian noise
2: for tÐ 1 to T do
3: Draw ĥi � N p0, Idq

4: Sample initial prediction Ŷi � GαpXi, ĥiq.
5: Revise Ŷi to obtain Ỹi by Langevin dynamics in Eq. (2)
6: Revise ĥi to obtain h̃i by Langevin dynamics in Eq. (7)
7: Update θ with ∆θptYiu, tỸiuq in Eq. (5) using Adam
8: Update α with ∆αpth̃iu, tỸiuq in Eq. (8) using Adam
9: end for

4 Weakly Supervised Saliency Prediction
In Section 3, the framework is trained from fully-observed
training data. In this section, we want to show that our gen-
erative framework can be modified to handle the scenario in
which each image Xi only has a partial pixel-wise annota-
tion Y 1

i , e.g., scribble annotation (Zhang et al. 2020b). Since
the saliency map for each training image is incomplete, di-
rectly applying the algorithm to the incomplete training data
can lead to a failure of learning the distribution of saliency
given an image. However, generative models are good at
data recovery, therefore they can learn to recover the incom-
plete data. In our framework, we will leverage the recovery
powers of both EBM and LVM to deal with the incomplete
data in our cooperative learning algorithm, and this will lead
to a novel weakly supervised saliency prediction framework.

To learn from incomplete data, our algorithm alternates
the cooperative learning step and the cooperative recovery
step. Both steps need a cooperation between EBM and LVM.
The cooperative learning step is the same as the one used
for fully observed data, except that it treats the recovered
saliency maps, which are generated from the cooperative re-
covery step, as training data in each iteration. The following
is the cooperative recovery step, which consists of two sub-
steps driven by the LVM and the EBM respectively:

(i) Recovery by LVM in Latent Space. Given an im-
age Xi and its incomplete saliency map Y 1

i , the recovery
of the missing part of Y 1

i can be achieved by first infer-
ring the latent vector h1i based on the partially observed
saliency information via h1i � pαph|Y

1
i , Xiq, and then gen-

erating Ŷ 1
i � GαpXi, h

1
iq with the inferred latent vector

h1i. Let Oi be a binary mask, with the same size as Y 1,



indicating the locations of visible annotations in Y 1
i . Oi

varies for different Y 1
i and can be extracted from Y 1

i . The
Langevin dynamics for recovery iterates the same step in
Eq. (7) except that B

Bh log pαpY
1, hτ |Xq � 1

σ2 pO � pY �

GαpX,hτ qqq
B
BhGαpX,hτ q � hτ , where � denotes element-

wise matrix multiplication operation.
(ii) Recovery by EBM in Data Space. With the initial

recovered result Ŷ 1 generated by the coarse saliency predic-
tor pα, the fine saliency predictor pθ can further refine the
result by running a finite-step Langevin dynamics, which is
initialized with Ŷ 1, to obtain Ỹ 1. The underlying principle is
that the initial recovery Ŷ 1 might be just around one local
mode of the energy function. A few steps of Langevin dy-
namics (i.e., stochastic gradient descent) toward pθ, starting
from Ŷ 1

i , will push Ŷ 1
i to its nearby low energy mode, which

might correspond to its complete version Yi.

Algorithm 2: Cooperative learning while recovering
Input:
(1) Images tXiuni with incomplete annotations tY 1

i u
n
i ;

(2) Number of learning iterations T
Output: Parameters θ and α
1: Initialize θ and α with Gaussian noise
2: for tÐ 1 to T do
3: Infer ĥ1

i from the visible part of Y 1

i by Langevin dynamics
in Eq. (7)

4: Obtain initial recovery Ŷi � GαpXi, ĥ
1

iq.
5: Revise Ŷ 1

i to obtain Ỹ 1

i by Langevin dynamics in Eq. (2)
6: Draw ĥi � N p0, Idq

7: Sample initial prediction Ŷi � GαpXi, ĥiq.
8: Revise Ŷi to obtain Ỹi by Langevin dynamics in Eq. (2)
9: Revise ĥi to obtain h̃i by Langevin dynamics in Eq. (7)

10: Update θ with ∆θptỸ 1

i u, tỸiuq using Adam
11: Update α with ∆αpth̃iu, tỸiuq using Adam
12: end for

Cooperative Learning and Recovering. At each itera-
tion t, we perform the above cooperative recovery of the in-
complete saliency maps tY 1uni�1 via pθptq and pαptq , while
learning pθpt�1q and pαpt�1q from tXi, Ỹ

1ptq
i uni�1, where

tỸ
1ptq
i uni�1 are the recovered saliency maps at iteration t.

The parameters θ are still updated via Eq. (5) except that
we replace Yi by Ỹ 1

i . That is, at each iteration, we use
the recovered Ỹ 1

i , as well as the synthesized Ỹi, to com-
pute the gradient of the log-likelihood, which is denoted by
∆θptỸ 1

i u, tỸiuq. The algorithm simultaneously performs (i)
cooperative recovering of missing annotations of each train-
ing example; (ii) cooperative sampling to generate annota-
tions; (iii) cooperative learning of the two models by updat-
ing parameters with both recovered annotations and gener-
ated annotations. See Algorithm 2 for a detailed description
of the learning while recovering algorithm.

5 Technical Details
We present the details of architecture designs of the LVM
and the EBM, as well as the hyper-parameters below.

Latent Variable Model: The LVM GαpX,hq, using the
ResNet50 (He et al. 2016) as an encoder backbone, maps
an image X and a latent vector h to a saliency map Ŷ .
Specifically, we adopt the decoder from the MiDaS (Ran-
ftl et al. 2020) for its simplicity, which gradually aggregates
the higher level features with lower level features via resid-
ual connections. We introduce the latent vector h to the bot-
tleneck of the LVM by concatenating the tiled h with the
highest level features of the encoder backbone, and then feed
them to a 3 � 3 convolutional layer to obtain a feature map
with the same size as the original highest level feature map
of the encoder. The latent-vector-aware feature map is then
fed to the decoder from Ranftl et al. (2020) to generate a
final saliency map. As shown in Eq. (8), the parameters of
the LVM are updated with the revised predictions tỸ u pro-
vided by the EBM. Thus, immature tỸ u in the early stage of
the cooperative learning might bring in fluctuation in train-
ing the LVM, which in turn affects the convergence of the
MCMC samples tỸ u. To stabilize the cooperative training,
especially in the early stage, we let the LVM learn from not
only tỸ u but also tY u. Specifically, we add an extra loss for
the LVM as λLcepGαpX, h̃q, Y q, where λ linearly decreases
to 0 during training, and Lce is the cross-entropy loss.

Energy-Based Model: The energy function UθpY,Xq is
parameterized by a neural network that maps the channel-
wise concatenation of X and Y to a scalar. Let cksl-n
denote a k�k Convolution-BatchNorm-ReLU layer with
n filters and a stride of l. Let fc-n be a fully con-
nected layer with n filters. The UθpY,Xq is our framework
consists of the following layers: c3s1-32, c4s2-64,
c4s2-128, c4s2-256, c4s1-1, fc-100.

Implementation Details: We train our model with a max-
imum of 30 epochs. Each image is rescaled to 352�352. We
set the number of dimensions of the latent space as d � 8.
The number of Langevin steps is K � 5 and the Langevin
step sizes for EBM and LVM are 0.4 and 0.1. The learning
rates of the LVM and EBM are initialized to 5 � 10�5 and
10�3 respectively. We use Adam optimizer with momentum
0.9 and decrease the learning rates by 10% after every 20
epochs. It takes 20 hours to train the model with a batch size
of 7 using a single NVIDIA GeForce RTX 2080Ti GPU.

6 Experiments
We conduct a series of experiments to test the perfor-
mances of the proposed generative cooperative frameworks
for saliency prediction. We start from experiment setup.

Datasets: We use the DUTS dataset (Wang et al. 2017) to
train the fully supervised model, and S-DUTS (Zhang et al.
2020b) dataset with scribble annotations to train the weakly
supervised model. Testing images include (1) DUTS testing
dataset, (2) ECSSD (Yan et al. 2013), (3) DUT (Yang et al.
2013), (4) HKU-IS (Li and Yu 2015), (5) PASCAL-S (Li
et al. 2014) and (6)SOD dataset (Movahedi and Elder 2010).

Compared methods: We compare our method against
state-of-the-art fully supervised saliency detection methods,
e.g., PoolNet (Liu et al. 2019), BASNet (Qin et al. 2019),
SCRN (Wu, Su, and Huang 2019b), F3Net (Wei, Wang, and
Huang 2020), ITSD (Zhou et al. 2020), LDF (Wei et al.



Table 1: Performance comparison with benchmark saliency prediction models, where “BkB” indicates the encoder backbone,
and “R34” is ResNet34 backbone (He et al. 2016), and “R50” is the ResNet50 backbone (He et al. 2016).

DUTS ECSSD DUT HKU-IS PASCAL-S SOD
Method Year BkB Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó

Fully Supervised Models
PoolNet 2019 R50 .887 .840 .910 .037 .919 .913 .938 .038 .831 .748 .848 .054 .919 .903 .945 .030 .865 .835 .896 .065 .820 .804 .834 .084
BASNet 2019 R34 .876 .823 .896 .048 .910 .913 .938 .040 .836 .767 .865 .057 .909 .903 .943 .032 .838 .818 .879 .076 .798 .792 .827 .094
SCRN 2019 R50 .885 .833 .900 .040 .920 .910 .933 .041 .837 .749 .847 .056 .916 .894 .935 .034 .869 .833 .892 .063 .817 .790 .829 .087
F3Net 2020 R50 .888 .852 .920 .035 .919 .921 .943 .036 .839 .766 .864 .053 .917 .910 .952 .028 .861 .835 .898 .062 .824 .814 .850 .077
ITSD 2020 R50 .885 .840 .913 .041 .919 .917 .941 .037 .840 .768 .865 .061 .917 .904 .947 .031 .860 .830 .894 .066 .836 .829 .867 .076
LDF 2020 R50 .892 .861 .925 .034 .919 .923 .943 .036 .839 .770 .865 .052 .920 .913 .953 .028 .842 .768 .863 .064 - - - -
UCNet+ 2021 R50 .888 .860 .927 .034 .921 .926 .947 .035 .839 .773 .869 .051 .921 .919 .957 .026 .851 .825 .886 .069 .828 .827 .856 .076
PAKRN 2021 R50 .900 .876 .935 .033 .928 .930 .951 .032 .853 .796 .888 .050 .923 .919 .955 .028 .858 .838 .896 .067 .833 .836 .866 .074
Our F 2021 R50 .902 .877 .936 .032 .928 .935 .955 .030 .857 .798 .889 .049 .927 .917 .960 .026 .873 .846 .909 .058 .854 .850 .885 .064

Weakly Supervised Models
SSAL 2020 R50 .803 .747 .865 .062 .863 .865 .908 .061 .785 .702 .835 .068 .865 .858 .923 .047 .798 .773 .854 .093 .750 .743 .801 .108
SCWS 2021 R50 .841 .818 .901 .049 .879 .894 .924 .051 .813 .751 .856 .060 .883 .892 .938 .038 .821 .815 .877 .078 .782 .791 .833 .090
Our W 2021 R50 .847 .816 .902 .048 .896 .896 .934 .045 .817 .762 .864 .058 .894 .893 .943 .037 .834 .823 .886 .073 .803 .793 .849 .082

Image GT SCRN F3Net ITSD LDF PAKRN Ours F Uncertainty

Figure 1: Comparison of qualitative results of different fully supervised saliency prediction models.

2020), UCNet+ (Zhang et al. 2021) and PAKRN (Xu et al.
2021). UCNet+ (Zhang et al. 2021) is the only generative
framework. We also compare our weakly supervised solu-
tion with the scribble saliency detection models, e.g., SSAL
(Zhang et al. 2020b) and SCWS (Yu et al. 2021).

Evaluation Metrics: We evaluate performance of our
models and compared methods with four saliency evalua-
tion metrics, including Mean Absolute Error (M), mean F-
measure (Fβ), mean E-measure (Eξ) (Fan et al. 2018) and
S-measure (Sα) (Fan et al. 2017).

6.1 Fully Supervised Saliency Prediction
We first test the performance of our fully supervised gener-
ative cooperative saliency prediction framework.

Quantitative comparison: We compare the performance

of our models and the compared methods in Table 1, where
“Ours F” denotes the proposed fully supervised models. We
observe consistent performance improvement of “Ours F”
over six testing datasets compared with benchmark models,
which clearly shows the advantage of our model. Note that,
we adopt an existing decoder structure, i.e., MiDaS decoder
(Ranftl et al. 2020), for the latent variable model in our pro-
posed framework due to its easy implementation. We con-
duct an ablation study in Section 6.4 to further investigate
the design of the decoder. Since our model uses a stochas-
tic method, i.e., cooperative sampling, for prediction, we re-
port the mean prediction to evaluate the performance of our
models. Also, we observe relatively stable performance for
different samples of predictions in larger testing datasets,
e.g., DUTS testing dataset (Wang et al. 2017), and slightly



Table 2: Experimental results of using EBMs as refinement modules and ablation study.

DUTS ECSSD DUT HKU-IS PASCAL-S SOD
Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó

EBM as Refinement Module
BASN R .891 .842 .889 .041 .926 .921 .947 .035 .839 .781 .870 .051 .919 .925 .942 .031 .837 .749 .857 .070 .852 .859 .869 .090
SCRN R .899 .857 .923 .034 .920 .921 .938 .037 .831 .748 .854 .053 .921 .919 .958 .027 .857 .769 .871 .062 .857 .867 .873 .080

Ablation Study
GαpXq .878 .835 .918 .038 .916 .915 .946 .036 .826 .751 .862 .058 .912 .901 .952 .030 .856 .830 .899 .064 .829 .827 .871 .072
GαpX,hq .897 .858 .932 .034 .918 .923 .946 .034 .837 .777 .882 .051 .914 .913 .957 .028 .863 .835 .900 .062 .831 .830 .874 .070
ITSD .885 .840 .913 .041 .919 .917 .941 .037 .840 .768 .865 .061 .917 .904 .947 .031 .860 .830 .894 .066 .836 .829 .867 .076
ITSD Ours .914 .880 .945 .030 .938 .935 .959 .029 .860 .803 .901 .044 .933 .927 .971 .026 .875 .848 .921 .055 .845 .835 .880 .067
VGG16 Ours .906 .876 .941 .032 .939 .933 .953 .030 .857 .799 .893 .048 .929 .923 .959 .027 .871 .844 .907 .058 .841 .838 .871 .066
Our F .902 .877 .936 .032 .928 .935 .955 .030 .857 .798 .889 .049 .927 .917 .960 .026 .873 .846 .909 .058 .854 .850 .885 .064

Image GT Scribble Recovered

Figure 2: Learning from images with scribble annotations. Each
row shows one example of annotation recovery during training. The
columns from left to right present training input images (“images”),
ground truth annotations (“GT”) that are unknown for the learn-
ing algorithm, scribble annotations (“scribble”) as weak labels for
training, and the output recovered annotations (“Recovered”) using
the proposed “cooperative learning while recovering” strategy.

fluctuant performance in smaller testing datasets, e.g., SOD
(Movahedi and Elder 2010) testing dataset.

Qualitative comparison: Figure 1 displays some qual-
itative results of the saliency predictions produced by our
method and the compared methods. Each row corresponds
to one example, and shows an input testing image, the cor-
responding ground truth saliency map, saliency maps pre-
dicted by SCRN, F3Net, ITSD, LDF and PAKRN, followed
by the mean predicted saliency map and the pixel-wise un-
certainty map of our model. The uncertainty map indicates
the model confidence in predicting saliency from a given im-
age, and is computed as the entropy (Kendall et al. 2017;
Kendall and Gal 2017; Zhang et al. 2021, 2020a) of our
model predictions. Results show that our method can not
only produce visually reasonable saliency maps for input
images but also meaningful uncertainty maps that are con-
sistent with human perception.

Prediction time and model size comparison: We have
two main modules in our framework, namely a latent vari-
able model and an energy-based model. The former takes
the ResNet50 (He et al. 2016) backbone as encoder, and the
MiDaS (Ranftl et al. 2020) decoder for feature aggregation,

Image GT SSAL SCWS Ours W Uncer.

Figure 3: Comparison of qualitative results obtained by differ-
ent weakly supervised models learned from scribble annotations.
Each row of example illustrates an input testing image, the corre-
sponding ground truth saliency map as reference, the predictions
from compared methods SSAL and SCWS, the mean prediction
(“Ours W”) and the uncertainty map (“Uncer.”) of our method .

leading to a model parameter size of 55M for the LVM. The
latter adds 1M extra parameters to the cooperative learning
framework. Thus, our model size is a total of 56M, which
is comparable with mainstream saliency detection models,
e.g., F3Net (Wei, Wang, and Huang 2020) has 48M parame-
ters. As to the cooperative prediction time, it costs approxi-
mately 0.08 seconds to output a single prediction of saliency
map, which is comparable with existing solutions as well.

6.2 Weakly Supervised Saliency Prediction
We then evaluate our weakly supervised generative coopera-
tive saliency prediction framework on a dataset with scribble
annotations (Zhang et al. 2020b), and show prediction per-
formance on six testing sets in Table 1, where “Our W” in
the “Weakly Supervised Models” panel denotes our model.
Figure 2 shows some examples of annotation recovery dur-
ing training, where each row of example displays an input
training image, the ground truth annotation as reference,
scribble annotation used for training (the yellow scribble in-
dicates the salient region, and the blue scribble indicates the
background region), and the recovered saliency annotation



Image GT BASN BASN R SCRN SCRN R

Figure 4: Comparison of qualitative results of base models with-
out and with the trained EBM as a refinement module. “BASN”
and “SCRN” are base models. “BASN R” and “SCRN R” are the
corresponding methods with EBM refinement.

obtained by our method. We compare our model with base-
line methods, e.g., SSAL (Zhang et al. 2020b) and SCWS
(Yu et al. 2021). The better performance of our model in
testing shows the effectiveness of the proposed “coopera-
tive learning while recovering” algorithm. Figure 3 displays
a comparison of qualitative results obtained by different
weakly supervised saliency prediction methods in testing.

6.3 Energy Function as a Refinement Module
As shown in Eq. (2), the EBM can iteratively refine the
saliency prediction by Langevin sampling. With a well-
trained energy function, we can treat it as a refinement mod-
ule to refine predictions from existing saliency detection
models. To demonstrate this idea, we select “BASN” (Qin
et al. 2019) and “SCRN” (Wu, Su, and Huang 2019b) as base
models due to the accessibility of their codes and predic-
tions. We refine their predictions with the trained EBM and
denote them by “BASN R” and “SCRN R”, respectively.
Performances are shown in Table 2. Comparing with the per-
formance of the base models in Table 1, we observe consis-
tent performance improvements by using the trained EBM
for refinement in Table 2. We show three examples of these
models with and without EBM refinement in Figure 4. The
qualitative improvement due to the usage of the EBM refine-
ment verifies the usefulness of learned energy function.

6.4 Ablation Study
We conduct the following experiments as shown in Table 2
to further analyze our proposed framework. Training a de-
terministic noise-free encoder-decoder Gα: We remove
the latent vector h from our noise-injected encoder-decoder
GαpX,hq and obtain a deterministic noise-free encoder-
decoder GαpXq. We train GαpXq with the cross-entropy
loss as in those conventional deterministic saliency predic-
tion models. In comparison with the state-of-the-art deter-
ministic saliency detection model, i.e., PAKRN (Xu et al.
2021), GαpXq shows inferior performance due to its us-
age of a relatively small decoder (Ranftl et al. 2020). How-
ever, the superior performance of “Ours F”, which is built
upon GαpX,hq that shares the same decoder structure with
GαpXq, has exhibited the usefulness of the latent vector h
for generative modeling and verified the effectiveness of the
EBM for cooperative learning.

Figure 5: Saliency predictions of alternative uncertainty estima-
tion methods. For each panel, the first row shows an input image
followed by the mean predictions of different alternative uncer-
tainty estimation methods and ours, and the second row shows the
ground truth saliency map followed by the uncertainty maps of dif-
ferent methods. From left to right columns, they are Image/ground
truth, “CVAE”, “CGAN”, “MCD”, “ENS” and ours.

Training a latent variable modelGαpX,hq without the
EBM: To further validate the importance of the cooperative
training, we train a single latent variable model GαpX,hq
without relying on an EBM, which leads to the alternat-
ing back-propagation training scheme (Han et al. 2017).
GαpX,hq directly learns from observed training data rather
than synthesized examples provided by an EBM. Compared
with GαpX,hq trained independently, ”Ours F“ achieves
better performance, which validates the effectiveness of the
cooperative learning strategy.

Design of encoder and encoder structures: We replace
the decoder part in our proposed framework by the one
of those existing deterministic saliency prediction methods,
e.g., ITSD (Zhou et al. 2020). We select ITSD (Zhou et al.
2020) because of the availability of its code and the state-
of-the-art performance. We show its performance in Table
2 as “ITSD Ours”. Further, we replace the ResNet50 (He
et al. 2016) encoder backbone in our model by VGG16 (Si-
monyan and Zisserman 2014) and denote the new model
as “VGG16 Ours”. The consistently better performance of
“ITSD Ours” than the original “ITSD” validates the supe-
riority of the generative cooperative learning framework.
Comparable performances are observed in our models with
different backbone selections.

6.5 Alternative Uncertainty Estimation Methods
In this section, we compare our generative framework with
other alternative uncertainty estimation methods for saliency
prediction. We first design two alternatives based on CVAEs
(Sohn, Lee, and Yan 2015b) and CGANs (Mirza and Osin-
dero 2014), respectively. For the CVAE model, we follow
Zhang et al. (2021), except that we replace its decoder net-
work by our decoder (Ranftl et al. 2020). As to the CGAN,
we optimize the adversarial loss (Goodfellow et al. 2014)
of the conditional generative adversarial network that con-
sists of a conditional generator G and a conditional dis-
criminator D. Specifically, we use the same latent variable
model GαpX,hq as that in our model for the generator of



Table 3: Performance comparison with alternative uncertainty estimation methods.

DUTS ECSSD DUT HKU-IS PASCAL-S SOD
Method Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó Sα Ò Fβ Ò Eξ Ò M Ó

CVAE .890 .849 .925 .036 .919 .918 .948 .034 .836 .761 .868 .056 .918 .906 .955 .028 .863 .835 .902 .062 .838 .830 .878 .071
CGAN .888 .849 .927 .035 .917 .914 .944 .036 .837 .764 .871 .054 .917 .908 .955 .028 .865 .839 .906 .059 .836 .833 .874 .072
MCD .881 .842 .918 .038 .917 .917 .944 .036 .828 .753 .859 .057 .915 .908 .951 .030 .863 .837 .902 .062 .834 .831 .868 .073
ENS .885 .841 .921 .037 .921 .917 .948 .035 .831 .752 .862 .057 .916 .901 .952 .030 .858 .827 .897 .065 .835 .828 .872 .073
Our F .902 .877 .936 .032 .928 .935 .955 .030 .857 .798 .889 .049 .927 .917 .960 .026 .873 .846 .909 .058 .854 .850 .885 .064

CGAN. For the discriminator, we design a fully convolu-
tional discriminator as in Hung et al. (2018) to classify each
pixel into real (ground truth) or fake (prediction). To train
CGAN, the discriminator D is updated with the discrimina-
tor loss LcepDpY q,1q � LcepDpGαpX,hqq,0q, where Lce
is the binary cross-entropy loss, 1 and 0 are all-one and
all-zero maps of the same spatial size as Y . Gα is updated
with LcepGαpX,hq, Y q � λdLcepDpGαpX,hqq,1q, where
LcepDpGαpX,hqq,1q is the adversarial loss for G and
LcepGαpX,hq, Y q is the cross-entropy loss between the out-
puts of G and the observed saliency maps. We set λd � 0.1.

We also design two ensemble-based saliency detection
frameworks with Monte Carlo dropout (Gal and Ghahra-
mani 2016) and deep ensemble (Lakshminarayanan, Pritzel,
and Blundell 2017) to produce multiple predictions, and
show their performance as “MCD” and “ENS” in Table 3 re-
spectively. For “MCD”, we add dropout to each level of fea-
tures of the encoder within the noise-free encoder-decoder
GαpXq with a dropout rate 0.3, and use dropout in both of
training and testing processes. For “ENS”, we attach five
MiDaS decoder (Ranftl et al. 2020) to GαpXq, which are
initialized differently, leading to five outputs of predictions.
For both ensemble-based frameworks, similar to our gener-
ative models, we use the mean prediction averaging over 10
samples in testing as the final prediction, and the entropy of
the mean prediction as the predictive uncertainty following
Skafte, Jø rgensen, and Hauberg (2019).

We show performance of alternative uncertainty estima-
tion models in Table 3, and visualize the mean prediction
and predictive uncertainty for each method in Figure 5. For
the CVAE-based framework, designing the approximate in-
ference network takes extra efforts, and the imbalanced in-
ference model may lead to the posterior collapse issue as
discussed in He et al. (2019). For the CGAN-based model,
according to our experiments, the training is sensitive to the
proportion of the adversarial loss. Further, it cannot infer
the latent variables h, which makes the model hard to learn
from incomplete data for weakly supervised learning. For
the deep ensemble (Lakshminarayanan, Pritzel, and Blun-
dell 2017) and MC dropout (Gal and Ghahramani 2016)
solutions, they can hardly improve model performance, al-
though the produced predictive uncertainty maps can explain
model prediction to some extent. Compared all above al-
ternative methods, our proposed framework is stable due to
maximum likelihood learning, and we can infer latent vari-
ables h without the need of an extra encoder. Further, as
we directly sample from the truth posterior distribution via
Langevin dynamics, instead of the approximated inference
network, we have more reliable and accurate predictive un-

certainty maps compared with other alternative solutions.

7 Conclusion and Discussion
In this paper, we propose a novel energy-based genera-
tive saliency prediction framework based on the conditional
generative cooperative network, where a conditional latent
variable model and an conditional energy-based model are
jointly trained in a cooperative learning scheme to achieve a
coarse-to-fine saliency prediction. The latent variable model
serves as a coarse saliency predictor that provides a fast ini-
tial saliency prediction, while the energy-based model serves
as a fine saliency predictor that further refines the initial
output by the Langevin revision. Even though each of the
models can represent the conditional probability distribution
of saliency, the cooperative representation and training can
offer the best of both worlds. Moreover, we propose a co-
operative learning while recovering strategy and apply the
model to the weakly supervised saliency detection scenario,
in which partial annotations (e.g., scribble annotations) are
provided for training. As to the cooperative recovery part of
the proposed strategy, the latent variable model serves as a
fast but coarse saliency recoverer that provides an initial re-
covery of the missing annotations from the latent space via
inference process, while the energy-based model serves as
a slow but fine saliency recoverer that refines the initial re-
covery results by Langevin dynamics. Combining these two
types of recovery schemes leads to a coarse-to-fine recov-
erer. Further, we find that the learned energy function in
the energy-based model can serve as a refinement module,
which can be easily plugged into the existing pre-trained
saliency prediction models. The energy function is the po-
tential cost function trained from the saliency prediction
task. In comparison to a mapping function from image to
saliency, the cost function captures the criterion to measure
the quality of the saliency given an image, and is more gen-
eralizable so that it can be used to refine other saliency pre-
dictions. Extensive results exhibit that, compared with both
conventional deterministic mapping methods and alterna-
tive uncertainty estimation methods, our framework can lead
to both accurate saliency predictions for computer vision
tasks and reliable uncertainty maps indicating the model
confidence in performing saliency prediction from an image.
As to a broader impact, the proposed computational frame-
work might also benefit the researchers in the field of com-
putational neuroscience who investigate human attentional
mechanisms. The proposed coarse-to-fine saliency predic-
tion model and recovery model may shed light on a clear
path toward the understanding of relationship between vi-
sual signals and human saliency.
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