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Abstract

While deep learning (DL)-based video deraining meth-
ods have achieved significant successes in recent years, they
still have two major drawbacks. Firstly, most of them are
insufficient to model the characteristics of rain layers con-
tained in rainy videos. In fact, the rain layers exhibit strong
visual properties (e.g., direction, scale, and thickness) in
spatial dimension and causal properties (e.g., velocity and
acceleration) in temporal dimension, and thus can be mod-
eled by the spatial-temporal process in statistics. Secondly,
current DL-based methods rely heavily on the labeled train-
ing data, whose rain layers are synthetic, thus leading to a
deviation from real data. Such a gap between synthetic and
real data sets results in poor performance when applying
them to real scenarios. To address these issues, this paper
proposes a new semi-supervised video deraining method, in
which a dynamical rain generator is employed to fit the rain
layer for the sake of better depicting its intrinsic character-
istics. Specifically, the dynamical generator consists of one
emission model and one transition model to simultaneously
encode the spatial appearance and temporal dynamics of
rain streaks, respectively, both of which are parameterized
by deep neural networks (DNNs). Furthermore, different
prior formats are designed for the labeled synthetic and
unlabeled real data so as to fully exploit their underlying
common knowledge. Last but not least, we design a Monte
Carlo-based EM algorithm to learn the model. Extensive
experiments are conducted to verify the superiority of the
proposed semi-supervised deraining model.

1. Introduction
Rain is a very common bad weather that exists in many

videos. The appearance of rain not only negatively affects
the visual quality of the video, but also seriously deterio-

*Corresponding author.

rates the performance of subsequent video processing algo-
rithms, e.g., semantic segmentation [38], object detection
[9], and autonomous driving [7]. Thus, as a necessary video
pre-processing step, video deraining has attracted much at-
tentions from the computer vision community.

As an ill-posed inverse problem raised by Garg and Na-
yar [15], various methods have been proposed to handle the
video deraining task [47]. Most of the traditional methods
focus on exploiting rational prior knowledge for the back-
ground or rain layers so as to obtain a proper separation
between them. For example, low-rankness [23, 24, 53] is
widely used to encode the temporal correlations of back-
ground video. As for rain streaks, many visual character-
istics, such as photometric appearance [16], geometrical
features [41], chromatic consistency [36], local structure
correlations [8] and multi-scale convolutional sparse cod-
ing [31], have been explored in the past few years. Differ-
ent from these deterministic assumptions for rain streaks,
Wei et al. [53] firstly regard them as random variables,
and use Gaussian mixture model (GMM) to fit them. Al-
beit substantiated to be effective in some ideal scenarios,
these traditional methods are mainly limited by the subjec-
tive manually-designed prior knowledge and huge compu-
tation burden.

Recently, owning to the powerful nonlinear fitting ca-
pability of DNNs, DL-based methods facilitate significant
improvements for the video deraining task. The core idea
of this methodology is to directly train a derainer parame-
terized by DNNs based on synthetic rainy/clean video pairs
in an end-to-end manner. Most of these methods leverage
different technologies, e.g., superpixel alignment [6], dual-
level flow [56] and self-learning [58], to extract clean back-
grounds from rainy videos. In addition, Liu et al. [34, 35]
design a recurrent network to jointly perform both the rain
degradation classification and rain removal tasks.

Even though these DL-based methods have achieved im-
pressive deraining results on some synthetic benchmarks,
there still exists large room to further increase the perfor-
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Figure 1. The comparison of typical synthetic and real rainy im-
ages in NTURain data set. (a1)-(c1): synthetic rainy images, (a2)-
(c2): real rainy images.

mance and the generalization capability in real applications.
On one hand, most of these methods make efforts to depict
the background, but neglect to model the intrinsic charac-
teristics of the rain layers. In fact, the rain layer in video,
which is an image sequence of rain steaks, can be repre-
sented by a spatial-temporal process. Specifically, the ran-
domly scattered rain streaks in each time frame are charac-
terized with evident visual properties (e.g., direction, scale,
and thickness) in the spatial dimension, and the rain layers
in different time frames correspond to a continuous time
series along the temporal dimension, showing the causal
properties (e.g., velocity and acceleration) of the rain dy-
namics. Therefore, elaborately representing and exploiting
these intrinsic physical properties underlying the rain layers
in video data is expected to facilitate the rain removal task.

On the other hand, it is well known that the performance
of DL-based methods heavily relies on a large amount of
pre-collected training data, i.e., rainy/clean video pairs. In
fact, due to the high labor cost to obtain such video pairs in
real scenes, most of current methods have to use synthetic
ones, which are manually simulated based on the photo-
realistic rendering technique [17] or professional photog-
raphy and human supervision [50]. Fig.1 presents several
typical frames of synthetic and real rainy images in NTU-
Rain [6] data set, which is widely used as a benchmark for
current video deraining methods. It can be easily seen that
the rain patterns in synthetic and real rainy images are obvi-
ously different, and the real ones contain more complex and
diverse rain types. Because of such a deviation between
synthetic and real data sets, the performances of these DL-
based methods deteriorate seriously in the real cases. To
deal with the generic video deraining task, it is thus critical
to build a reasonable semi-supervised learning framework
that sufficiently exploits the common knowledge in the la-
beled synthetic and unlabeled real data.

To address these issues, in this paper we propose a semi-
supervised video deraining method, in which a dynamical
rain generator is adopted to mimic the generation process

of the rain layers in video, hopefully better capturing the in-
trinsic knowledge simultaneously from the spatial and tem-
poral dimensions. Besides, the real rainy videos are taken
into consideration in our model as unlabeled data, in order
to achieve more robust deraining results. In summary, the
contributions of this work are as follows:

Firstly, we propose a new probabilistic video deraining
method, in which a dynamical rain generator, consisting
of a transition model and an emission model, is employed
to fit the rain layers in videos. Specifically, the transition
model is used to represent the dynamics of rains in a low-
dimensional state space, while the emission model seeks to
generate the observed rain streaks in the image space from
the state space. To increase the capacities of such a dynam-
ical rain generator, both the transition and emission models
are parameterized by DNNs. Secondly, a semi-supervised
learning mechanism is designed by constructing different
prior formats for labeled synthetic data and unlabeled real
data. Specifically, for the labeled synthetic data, the corre-
sponding ground truth rain-free videos are included into an
elaborate prior distribution as a strong constraint. As for the
unlabeled real data, we introduce the 3-D Markov Random
Field (MRF) to model the temporal consistencies and cor-
relations of the underlying backgrounds. Thirdly, a Monte
Carlo-based EM algorithm is designed to learn the model.
In the expectation step, the posterior of the latent variables
is intractable due to the usages of DNNs to parameterize
the generator and derainer, thus the Langevin dynamics is
adopted to approximate the expectation.

2. Related Work
In this section, we give a short recap for the develop-

ments on the video/image deraining methods.

2.1. Video Deraining Methods

To the best of our knowledge, Garg and Nayar [15] firstly
proposed the problem of video deraining, and developed a
rain detector based on the photometric appearance of rain.
Later, they further explored the relationships between rain
effects and some camera parameters [16–18].

Inspired by these seminal works, various video deraining
methods have been proposed in the past few years, focusing
on seeking more reasonable prior knowledge for the rain
or background. For example, both the chromatic proper-
ties [36, 64] and shape characteristics [2, 3] of rain in the
time domain were employed to identify and remove the rain
layers from the captured rainy videos, while the regular vi-
sual effects of rain in the global frequency space were also
exploited by [1]. Besides, Santhaseelan and Asari [43] em-
ployed local phase congruency to detect rain based on chro-
matic constraints. Notably, Wei et al. [53] firstly regarded
rain streaks as random variables and fitted them by GMM.
In addition, matrix/tensor factorization technologies were



also very popular in the field of video deraining, which were
typically used to encode the correlations of background
video along the temporal dimension, e.g., [8,23,24,27,41].

In recent years, DL-based methods represent a new trend
along this research line. In [31], Li et al. employed the
multi-scale convolutional sparse coding to encode the repet-
itive local patterns under different scales of rain streaks.
Chen et al. [6] proposed to decompose the scene into su-
perpixels and then align the scene content based on the su-
perpixel segmentation result, and finally a CNN was used
to compensate the lost details and add normal textures to
the deraining result. In [35], Liu et al. designed a recurrent
neural network to jointly perform the rain degradation clas-
sification and rain removal tasks. And in [34], a hybrid rain
model was proposed to model both rain streaks and occlu-
sions. Besides, Yang et al. [56] also built a two-stage recur-
rent networks that utlize dual-level regularizations toward
video deraining. Very recently, Yang et al. [58] proposed a
self-learning manner for this task by taking both temporal
correlations and consistencies into consideration.

While DL-based methods have achieved impressive per-
formance on some synthetic benchmarks, they are still very
hard to be applied to the real applications due to the large
gap between the used synthetic data and the real data.
Therefore, in order to increase the generalization capacity
of the deraining model in the real tasks, it is crucial to de-
sign a semi-supervised learning framework that makes use
of the information in both the labeled synthetic data and the
unlabeled real one. This paper mainly focuses on this issue.

2.2. Single Image Deraining Methods

For literature comprehensiveness, we also briefly review
the single image deraining methods. The single image de-
raining method can be roughly divided into two categories,
i.e., model-based methods and DL-based methods. Most of
the model-based methods formulate the deraining task as a
decomposition problem of the rain and background layers,
and various technologies have been employed to deal with
it, such as morphological component analysis [25], non-
local means filter [26], and sparse coding [5, 37]. Besides,
methods built on prior knowledge of rain and background
are also explored in this field, mainly including sparsity and
low-rankness [4, 19, 60], narrow directions of rain and the
similarities of rain patches [66], and GMM [33].

The earliest DL-based method was proposed by Fu et
al. [12, 13], in which CNNs were adopted to remove rains
from the high frequency parts of rainy images. Led by these
two works, DL-based methods began to dominate the re-
search in this field. Many effective and advanced network
architectures [14, 21, 30, 32, 40, 50] were put forward in re-
cent years. And some works attempted to jointly handle
the rain removal task with other related tasks, e.g., rain de-
tection [57], rain density estimation [61], so as to obtain

better deraining performance. Besides, some useful pri-
ors, e.g., multi-scale [22, 59, 65], convolutional sparse cod-
ing [48] and bilevel layer prior [39], were also embedded
into the DL-based methods to sufficiently mine the poten-
tials of DNNs. Different from the above methods, Zhang et
al. [62] and Wang et al. [46] both introduced the adversar-
ial learning scheme to enhance the fidelity of the derained
images, and Wei et al. [52] proposed a semi-supervised de-
raining model that can be better generalized to real tasks.

In general, single image deraining methods can be di-
rectly used in the video deraining task by treating each
video as a bunch of independent images. However, ignoring
the abundant temporal information contained in videos will
lead to an unsatisfied performance. Thus it is necessary to
design a reasonable deraining model specific for video data.

3. Semi-Supervised Video Deraining Model
Given a labeled data set D = {Yk,X k}Nlk=1 and an un-

labeled data set U = {Yk}Nuk=1, where Yk and X k denote
the k-th rainy and clean videos, respectively, we aim to con-
struct a semi-supervised probabilistic model based on them
and then design an EM algorithm to learn the model.

3.1. Model Formulation

Let Y = {Yt}nt=1 denote any rainy video in D or U ,
where Yt ∈ Rh×w is the t-th image frame. Similar to [31,
33], we decompose the rainy video Y into three parts, i.e.,

Y = f(Y;W ) +R+ E , Eijt ∼ N (0, σ2), (1)

where f(Y;W ), R and E are the recovered rain-free back-
ground, rain layer and residual term, respectively, and Eijt
is the element of E at location (i, j, t). The residual term is
assumed to follow a zero-mean Gaussian distribution with
variance σ2. f(·;W ), which is parameterized by DNNs,
denotes a function that maps the observed rainy video to
the underlying rain-free background, and is called the “de-
rainer” in this paper. Next, we consider how to model the
derainer parameter W and rain layerR:
Modeling of background layer: As is well known, one
general prior knowledge for video data is that the rain-free
background video has strong correlations and similarities
along spatial and temporal dimensions. Therefore, for any
rainy video Y ∈ U , we encode such a knowledge through
the following MRF prior distribution for W :

p(W ) ∝ exp

(
−ρ
∑
i,j,t

vTγ

)
, (2)

where v =

[ |fi+1,j,t−fijt|
|fi,j+1,t−fijt|
|fi,j,t+1−fijt|

]
, γ =

[ γ1
γ2
γ3

]
, and fijt denotes

the element of f(Y;W ) at location (i, j, t). ρ and γ are
both manual hyper-paramerters, and the latter represents the
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Figure 2. The network architecture for the derainer f(·;W ). In this figure, all “Conv”s denote the 3-D convolution layer.
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(a) Transition Model (b) Emission Model

Figure 3. An illustration of network architectures of the transition model and the emission model in the dynamical rain generator. In this
figure, “FC”, “Conv” and “Tanh” denote fully connected, 2-D convolution and hyperbolic tangent layers, respectively. “Pixel-Shuffle” is
the sub-pixel layer [45] with a scale factor r.

strength of smoothness constraint on the spatial and tem-
poral dimensions. As for the rainy video Y ∈ D, the
known rain-free background X can be further embedded
into Eq. (2) as another strong prior, i.e.,

p(W ) ∝ exp

(
−‖f(Y;W )−X‖2

ε20
− ρ

∑
i,j,t

vTγ

)
, (3)

where ε0 is a very small hyper-paramerter close to zero.
As for the derainer f(·;W ), we adopt a simple network

architecture as shown in Fig. 2. Without any special de-
signs, it only contains several 3-D convolution layers and
residual blocks [20]. To accelerate the computation, the
pixel-unshuffle [63] and pixel-shuffle [45] layers are added
to the head and the tail of the network, respectively.
Modeling of rain layer: Intuitively, the rain layer is a dy-
namical sequence, thus we naturally employ the spatial-
temporal process [11, 54, 55] in statistics to characterize it.
Let’s use Rt to denote the t-th image frame of rain layer
sequence R, and then our dynamical rain generator can be
formulated as follows,

st = F (st−1, zt;α), (4)
Rt = H(st;β), (5)

where
zt ∼ N (0, I), s0 ∼ N (0, I), (6)

st represents the hidden state variable in t-th frame, and
zt the noise vector. Specifically, Eq. (16) is the transition
model with parameters α expecting to depict the dynamics

of rains over time, and Eq. (17) is the emission model with
parameters β that maps the hidden state space to the space
of rain layer. Note that the noise vectors {zt}nt=1 are in-
dependent of each other, and each zt encodes the random
factors that affect the rains (e.g., wind, camera motion, etc)
at time t in the transition from st−1 to st.

Furthermore, following [55], we can extend the genera-
tor to an advanced version for multiple rain videos. Specifi-
cally, for the i-th rain video Ri = {Rit}nt=1, another vector
mi ∼ N (0, I) is introduced to account for the variation of
rain appearances or patterns over different videos, and thus
the transition model of Eq. (16) can be reformulated as:

sit = F (sit−1, z
i
t,m

i;α), (7)

where mi is fixed for the i-th rain video. For notation con-
venience, we write Eqs. (7) and (17) together as follows:

Ri = G(si0, z
i,mi;θ), (8)

where zi = {zit}nt=1, θ = {α,β}. In practice, we use the
extended version of Eq. (8) to simultaneously fit the rain
layers in each mini-batch of video data.

To increase the capacity of such a dynamical rain gener-
ator, we parameterize both of the transition model and the
emission model by DNNs. Following [55], we use a two-
layers mutli-layer perceptron (MLP) in Fig. 3 (a) for the
transition model. As to the emission model, we elaborately
design a CNN architecture that takes the state variable st
as input and outputs the rain image as shown in Fig. 3 (b),
which is mainly inspired by a recent work [49] that uses
CNN as a latent variable model to generate rain streaks.



Remark: The employment of such a dynamical genera-
tor to fit the rain layers is one of the main contributions of
this work, which directly affects the deraining performance
of the entire model. Therefore, it is necessary to validate
the capability of the dynamical generator on simulating the
rain layers. To prove this point, we pre-collected some rain
layer videos synthesized by commercial Adobe After Ef-
fects1 software from YouTube as source videos, and trained
the dynamical generator on them. Empirically, we found
that the proposed dynamical rain generator is able to suffi-
ciently mimic the given rain layer videos. Due to the page
limitation, we put the experiments to the supplementary ma-
terials.

3.2. Maximum A Posteriori Estimation
Combining Eqs. (1)-(6), a full probabilistic model is ob-

tained for video deraining. Then our goal turns to maximize
the posteriors w.r.t the model parameters W and θ, i.e.,

max
W,θ

log p(W,θ|Y) = log p(Y|W,θ) + log p(W ) + const

, L(Y;W,θ), (9)

where p(Y|W,θ) is the likelihood of the rainy video Y . Ac-
cording to Eqs. (1) and (8), it can be written as:

p(Y|W,θ) =
∫
p(Y|W,θ,z)p(z) dz

=

∫
N
(
f(Y;W ) +G(s0,z;θ), σ

2I
)
p(z) dz.

Finally, we directly optimize the problem of Eq. (9) on
the whole labeled and unlabeled data sets, i.e.,

max
W,θ

∑
Yk∈D

L(Yk;W,θ) +
∑

Yk∈U

L(Yk;W,θ). (10)

The insight behind Eq. (10) is to learn a general mapping
from rainy videos to clean ones, based on large amount of
data samples inD and U , which is expected to obtain a more
efficient and robust derainer than that in traditional infer-
ence paradigm implementing on single video.

Most notably, if only considering labeled data set, our
method naturally degenerates into a supervised deraining
model. However, involving the unlabeled real data can in-
crease the generalization capacity of the model such that it
can be applied to the real cases as shown in the ablation
studies in Sec. 4.2.2.

3.3. Inference and Learning Algorithm

For notation brevity, we only consider one data sample
Y in this part. Inspired by the technology of alternative
back-propagation through time [55], a Monte Carlo-based
EM [10] algorithm is designed to maximize L(Y;W,θ),
in which the expectation step samples the latent variable z

1https://www.adobe.com/products/aftereffects.html

Algorithm 1 Inference and learning procedure for S2VD

Input: training data D = {Ybj ,X bj}Blj=1 and U =

{Ybj}Bl+Buj=Bl+1, where Ybj denotes the j-th mini-batch
data, number of Langevin steps l.

Output: the derainer parameters W .
1: Initialize W and θbj , zbj , j = 1, 2, · · · , Bl +Bu.
2: while not converged do
3: for j = 1, 2, · · · , Bl +Bu do
4: Sample the mini-batch data {Ybj ,X bj} or Ybj .
5: E-Step: For each data exampleYi in current mini-

batch Ybj , run l steps of Langevin dynamics to
sample zi following Eq. (12).

6: M-Step: Update W and θbj by Eq. (25).
7: end for
8: end while

from the posterior distribution p(z|Y), and the maximiza-
tion step updates the model parameters W and θ based on
the inferred latent variable z.
E-Step: Let (W old,θold) and pold(z|Y) denote the cur-
rent model parameters and the posterior under them, we
can sample z from pold(z|Y) using the Langevin dynam-
ics [29]:

z(τ+1) = z(τ) +
δ2

2

[
∂

∂z
log pold(z|Y)

] ∣∣∣∣
z=z(τ)

+ δξ(τ)

= z(τ) − δ2

2

[
∂

∂z
g(z)

] ∣∣∣∣
z=z(τ)

+ δξ(τ) (11)

where we define

g(z) =
1

2σ2

∥∥∥Y − f(Y;W old)−G(s0,z;θold)
∥∥∥
2
+

1

2
‖z‖2,

(12)
τ indexs the time step for Langevin dynamics, δ denotes
the step size, and ξ(τ) is the Gaussian white noise, which
is used to avoid falling into local modes. A key point to
compute Eq. (22) is ∂

∂z log pold(z|Y) = ∂
∂z log pold(Y, z),

and the right term can be easily calculated.
In practice, for the purpose of avoiding the high compu-

tational cost of MCMC, At each learning iteration, Eq. (22)
starts from the previous updated results of z. As for the ini-
tial state vector s0 and the rain variation vectorm in Eq. (8),
because they are also latent variables in our model, we sam-
ple them together with z using the Langevin dynamics.
M-Step: Denote the sampled latent variable in E-Step as
z̃, M-Step aims to maximize the approximate upper bound
w.r.t. W and θ as follows:

max
W,θ
Q(W,θ) =

∫
pold(z|Y) log p(Y,z|W,θ) dz + log p(W )

≈ log p(Y, z̃|W,θ) + log p(W ). (13)

Equivalently, Eq. (24) can be further rewritten as the follow-

https://www.adobe.com/products/aftereffects.html


Table 1. PSNR/SSIM results of different methods on the synthetic testing data set of NTURain. The best and second best results are
highlighted in red and blue, respectively.

Clip
No.

Rain DSC [37] FastDerain [24] DDN [13] PReNet [40] SpacCNN [6] SLDNet [58] S2VD
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

a1 29.71 0.9149 27.15 0.9079 29.29 0.9159 31.79 0.9481 32.13 0.9511 30.57 0.9334 33.72 0.9508 36.39 0.9658
a2 29.30 0.9284 28.84 0.9224 30.21 0.9245 30.34 0.9360 30.41 0.9375 31.29 0.9356 33.82 0.9512 33.06 0.9519
a3 29.08 0.8964 26.73 0.8942 29.94 0.9039 30.70 0.9301 30.73 0.9316 30.63 0.9247 33.12 0.9404 35.75 0.9564
a4 32.62 0.9381 30.58 0.9381 34.69 0.9707 35.77 0.9689 35.77 0.9700 35.30 0.9620 37.35 0.9722 39.53 0.9779
b1 30.03 0.8956 30.06 0.9015 29.35 0.9139 32.53 0.9465 32.66 0.9491 32.26 0.9454 34.21 0.9482 37.34 0.9712
b2 30.69 0.8874 30.85 0.9017 31.90 0.9520 33.89 0.9559 33.74 0.9557 35.11 0.9677 35.80 0.9595 40.55 0.9821
b3 32.31 0.9299 31.30 0.9295 29.28 0.9287 35.38 0.9663 35.34 0.9681 34.69 0.9566 36.34 0.9614 38.82 0.9754
b4 29.41 0.8933 30.61 0.9089 27.70 0.9095 32.62 0.9462 33.17 0.9526 34.87 0.9536 33.85 0.9469 37.53 0.9657

avg. 30.41 0.9108 29.52 0.9130 30.54 0.9255 32.87 0.9497 32.99 0.9519 33.11 0.9475 34.89 0.9540 37.37 0.9683

(a) Rain (b) Groundtruth (c) DDN (d) PReNet (e) SpacCNN (f) SLDNet (g) S2VD
Figure 4. Qualitative results of different methods on one typical image in NTURain synthetic testing data set. From left to right: (a) rainy
image, (b) ground truth image, (c)-(g) deraining results by DDN, PReNet, SpacCNN, SLDNet and our S2VD.

ing minimization problem, i.e.,

min
W,θ
L̂(W,θ) = 1

2σ2

∥∥Y − f(Y;W )−G(z̃, s0;θ)
∥∥
2
+

ρ
∑
i,j,t

vTγ + 1[Y∈D] ·
‖f(Y;W )−X‖2

ε20
, (14)

where 1[Y∈D] equals to 1 when Y comes from the labeled
data set D otherwise 0. Naturally, we can update W and
θ by gradient descent based on the back-propagation (BP)
algorithm [42] as follows,

Λ← Λ− η ∂

∂Λ
L̂(W,θ), Λ ∈ {W,θ}, (15)

where η denotes the step size.
Due to the capacity limitation, we empirically find it dif-

ficult to fit the rain layers in all training videos using only
one single generator defined in Eq. (8). Therefore, we train
one generator for each mini-batch data. With such a strat-
egy, our model performs well throughout all our experi-
ments. The mini-batch size is 12. A detailed description
of the proposed algorithm is presented in Algorithm 2.

4. Experimental Results
In this section, we conduct some experiments to evalu-

ate the effectiveness of the proposed semi-supervised video
deraining model on synthetic and real data sets. And we
briefly denote our Semi-Supervised Video Deraining model
by S2VD in the following presentation.

4.1. Evaluation on Rain Removal Task

Training Details: To train S2VD, we employ the syn-
thesized training data of NTURain [6] as labeled data set,
which contains 8 rain-free video clips of various scenes.
For each rain-free video, 3 or 4 rain layers are synthesized

by the Adobe After Effects with different settings, and then
added to the videos as rainy ones. As for unlabeled data, 7
real rainy videos without ground truths in the testing data
of NTURain are employed. To relieve the burden of GPU
memory, we use truncated back-propagation through time
in training, meaning that the whole training sequence is di-
vided into different non-overlapped chunks for forward and
backward propagation. The length of each chunk is 20.

The Adam [28] algorithm is used to optimize the model
parameters in the M-Step of our algorithm. All the network
parameters are initialized by [44]. The initialized learning
rates for the transition model, emission model and the de-
rainer are set to be 1e-3, 1e-4 and 2e-4, respectively, and
decayed by half after 30 epochs. The mini-batch size is
set as 12, and each video is clipped into small blocks with
spatial size 64 × 64 pixels. Note that we only update the
parameter W for the first 5 epochs to pretrain the derainer,
which makes the training more stable. As for the hyper-
parameters, ε20 = 1e-6, ρ = 0.5, γ = [1, 1, 2]T , and more
analysis experiments on them are presented in Sec. 4.2.

4.1.1 Evaluation on Synthetic Data

We test our S2VD on the synthetic testing data set of
NTURain [6], which consists of two groups of data sets.
The videos in the first group (with prefix “a” in Table 1)
are captured by a panning and unstable camera, while
those in the second group (with prefix “b” in Table 1)
by a fast moving camera with a speed range from 20 to
30 km/h. As to the methods for comparison, six SOTAs
are considered, including one model-based image derain-
ing method DSC [37], one model-based video deraining
method FastDerain [24], two DL-based image deraining
methods DDN [13] and PReNet [40], two DL-based video
deraining methods SpacCNN [6] and SLDNet [58]. The av-



(a) Rain (b) DDN (c) PReNet (d) SpacCNN (e) SLDNet (f) S2VD
Figure 5. Visual comparisons of different methods on three typical real testing images from NTURain [6] (the 1st row) and [31] (the 2nd
and 3rd row). From left to right: (a) rainy image, (b)-(f) deraining results by DDN, PReNet, SpacCNN, SLDNet and our S2VD.

(a) Rain (b) = 0 (c) = 0.1 (d) = 0.5 (S2VD) (e) = 1.0 (f) = 2.0

(g) Baseline1 (h) Baseline2 (i) Baseline3
Figure 6. Comparisons of S2VD under different settings: (a) rainy image, (b)-(f) deraining results of S2VD with different ρ values, (g)-(i)
deraining results of different Baselines defined in Sec. 4.2.2.

Table 2. Average PSNR/SSIM results of S2VD on the synthetic
testing dataset of NTURain under different ρ values.

Metrics ρ
0 0.1 0.5 1 2

PSNR 38.18 38.05 37.37 35.50 31.55
SSIM 0.9719 0.9713 0.9683 0.9519 0.8947

erage PSNR and SSIM [51] are used as quantitative metrics,
which are evaluated only in the luminance channel since we
are sensitive to the luminance information.

Table 1 lists the average PSNR/SSIM results on 8 testing
videos. Evidently, S2VD attains the best or at least second
best performance in all cases. Comparing with current SO-
TAs (SpacCNN or SLDNet), our method achieves at least
2.5dB PSNR and 0.01 SSIM gains. The qualitative results
are shown in Fig. 4. Note that we only display the results
of DL-based methods due to the page limitation. We ob-
serve that: 1) The derained results of PReNet still contain
some rain streaks. 2) Both DDN and SpacCNN lose some

Table 3. Average PSNR/SSIM results of three baselines and S2VD
on the synthetic testing dataset of NTURain.

Metrics Methods
Baseline1 Baseline2 Baseline3 S2VD

PSNR 36.11 37.12 37.96 37.37
SSIM 0.9602 0.9673 0.9717 0.9683

image contents. 3) SLDNet can not preserve the original
color maps very well. However, our S2VD evidently alle-
viate these deficiencies and obtains the closest results to the
ground truths, which verifies the effectiveness of our model.

4.1.2 Evaluation on Real Data

To further test the generalization capability of S2VD in real
tasks, we evaluate it on two kinds of real rainy videos, i.e.,
the real testing data set in NTURain and several other real
rainy videos in [31]. Note that the former is included in our
training set as unlabeled data, but the latter is not. Fig. 5
presents some typical deraining results by different meth-



ods on these two kinds of data sets. It can be seen that
S2VD achieves the best visual results comparing with other
methods. Especially, the superiority of our model shown in
the second data set substantiates that S2VD is able to han-
dle the real rainy videos even though they do not appear in
the unlabeled data set. This generalization capability would
be potentially useful in real deraining tasks.

4.2. Additional Analysis

4.2.1 Sensitiveness of Hyper-paramerter ρ

The hyper-paramerter ρ in Eq. (2) or (3) controls the rel-
ative importantance of MRF prior in S2VD. The quantita-
tive performances on the synthetic testing data set and the
qualitative performances on the real testing data set of NTU-
Rain under different ρ values are presented in Table 2 and
Fig. 6, respectively. On one hand, when ρ increases, the
performance on the synthetic testing set tends to decrease
as shown in Table 2, since the relative importance of the
constraint built on the ground truth in Eq. (3) decreases. On
the other hand, the MRF prior is able to prevent the de-
rainer from overfitting the synthetic data, thus improving
the generalization capability in real cases, which has been
sufficiently verified by the visual comparisons in Fig. 6. By
taking into account these two aspects, we set ρ as 0.5.

4.2.2 Ablation Studies

As shown in Eq. (25), our S2VD degenerates into the Mean
Squre Error (MSE) loss when ε0 → 0. Comparing with
such special case, our model introduces one more likelihood
term, one more MRF regularizer and the semi-supervised
learning paradigm. To clarify the effect of each part, we
compare S2VD with three baselines as follows: 1) Base-
line1: We only train the derainer with the MSE loss on la-
beled data set. 2) Baseline2: We train S2VD with ε20 = 1e-6
and ρ = 0 only on labeled data set so that we can justify the
marginal gain from the likelihood term by comparing with
Baseline1 using the MSE loss. 3) Baseline3: On the basis of
Baseline2, we introduce the MRF regularizer with ρ = 0.5.

The quantitative comparisons on synthetic testing data
set of NTURain are listed in Table 3, and the visual re-
sults on real testing data set are also displayed in Fig. 6.
In summary, we can see that: 1) The performance improve-
ment (1.01dB PSNR and 0.0071 SSIM) of Baseline2 be-
yond Baseline1 substantiates that the likelihood term plays
an important role in our model. 2) Under the supervised
learning manner, the MRF prior is beneficial to our model in
both synthetic and real cases according to the performance
of Baseline3. 3) The addition of unlabeled data in S2VD in-
creases the generalization capability in real tasks as shown
in Fig. 6 (d) and (i). However, it leads to a little deteriora-
tion of the performance on synthetic data, mainly because

(a) Rainy (b) S2VD

Figure 7. Two typical failure deraining examples by our method.
The first row shows a case of large camera motion, while the sec-
ond row shows another case with heavy rain streaks.

there is a gap between the rain types contained in the labeled
synthetic and unlabeled real data sets.

4.2.3 Limitation and Future Direction

Although our method can achieve impressive deraining re-
sults as shown above, it may still fails in some real scenar-
ios, e.g., a case with a large camera motion between adja-
cent time frames and a case with heavy rain streaks. Two
failure examples are shown in Fig. 7. The reason is because
the adopted MRF prior for unlabeled real data is not strong
enough to guarantee satisfactory deraining results in these
complicated cases. Therefore, it is urgent and necessary
to explore better prior knowledge in order to handle more
complicated real deraining tasks in the future.

5. Conclusion
In this paper, we design a dynamical rain generator based

on the spatial-temporal process in statistics. With such
a dynamical generator, a semi-supervised video deraining
method is proposed. Specifically, we represent the sequence
of rain layers in rain videos using the dynamical rain gen-
erator, which is able to facilitate the rain removal task. To
handle the generalization issue for real cases, we propose
a semi-supervise learning manner to exploit the common
knowledge underlying the synthetic labeled and real unla-
beled data sets. Besides, a Monte Carlo-based EM algo-
rithm is designed to learn the model parameters. Exten-
sive experimental results demonstrate the effectiveness of
the proposed video deraining method.
Acknowledgement: This research was supported by the
National Key R&D Program of China (2020YFA0713900),
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Appendix

We provide more details on how to apply the proposed dy-
namic rain generator to synthesize new rainy videos that
look similar to any observed video, which only contains the
rain layer. Rain generation experiments are also conducted
to evaluate its effectiveness. Besides, more analysis about
the model capacity and running time of our method are also
presented to verify its superiority.

A. Dynamical Rain Generator
In Sec. 3.1 of the main text, we design the following dy-

namical rain generator, i.e.,

st = F (st−1, zt;α), (16)
Rt = H(st;β), (17)

where
zt ∼ N (0, I), s0 ∼ N (0, I). (18)

The detailed explanations about Eqs. (16)-(18) can be seen
in the main text. By denoting z = {zt}nt=1 and θ =
{α,β}, Eqs. (16) and (17) can be simply written together
as follows,

R = G(s0, z;θ). (19)

A.1. Maximum Likelihood Estimation

Given any observed video Ro purely containing rain
layer, we assume that it is generated by the aforementioned
generator with an additional residual term E , i.e.,

Ro = G(s0, z;θ) + E ,
Eijt ∼ N (0, σ2), (20)

where Eijt denotes the element with index (i, j, t) in E .
According to Eq. (20), our goal turns to maximize the

log-likelihood p(Ro;θ) w.r.t. the parameters θ, i.e.,

max
θ

log p(Ro;θ) = log

∫
p(Ro|z)p(z) dz

= log

∫
N (G(s0, z;θ) , σ

2I)p(z) dz

, L(Ro;θ), (21)

where p(z) is defined in Eq. (18).

A.2. Inference and Learning Algorithm

Inspired by the technology of alternative back-
propagation through time [55], a Monte Carlo-based
EM [10] algorithm is designed to learn the model param-
eter θ by solving the problem of Eq. (21), which consists
of two alternative steps, i.e., one expectation step and one

Algorithm 2 Inference and learning procedure for the dy-
namic rain generator
Input: Observe dataRo, number of Langevin steps l.
Output: the generator parameters θ.
1: Initialize θ.
2: while not converged do
3: E-Step: Run l steps of Langevin dynamics to sample

z following Eq. (22).
4: M-Step: Update θ by gradient descent in Eq. (25).
5: end while

maximization step. The expectation step aims to sample la-
tent variable z from the posterior p(z|Ro), while the maxi-
mization step updates the parameters θ based on the current
sampled z.
E-Step: Let θold and pold(z|Ro) denote the current pa-
rameters θ and the corresponding posterior distribution, we
can sample z from pold(z|Ro) using the Langevin dynam-
ics [29]:

z(τ+1) = z(τ) +
δ2

2

[
∂

∂z
log pold(z|Ro)

] ∣∣∣∣
z=z(τ)

+ δξ(τ)

= z(τ) − δ2

2

[
∂

∂z
g(z)

] ∣∣∣∣
z=z(τ)

+ δξ(τ), (22)

where

g(z) =
1

2σ2

∥∥∥Ro −G(z, s0;θold
)∥∥∥

2
+

1

2
‖z‖2, (23)

τ indexs the time step for Langevin dynamics, δ denotes the
Langevin step size. And ξ(τ) is the Gaussian white noise,
which is added to prevent trapping into local modes. A key
point in Eq. (22) is ∂

∂z log pold(z|Ro) = ∂
∂z log pold(Ro, z),

and the right term can be easily calculated.
In practice, for the purpose of avoiding high computa-

tional cost of MCMC, Eq. (22) is initizlized with the previ-
ous updated result of z at each iteration. As for the initial-
ized state vector s0 of Eq. (20), we also sample it together
with z using the Langevin dynamics.
M-Step: Denote the sampled latent variable in E-Step as
z̃, M-Step aims to maximize the approximate upper bound
w.r.t. parameters θ as follows:

max
θ
Q(θ) =

∫
pold(z|R) log p(Ro, z;θ) dz

≈ log p(Ro, z̃;θ). (24)

Equivalently, Eq. (24) can be further rewritten as the fol-
lowing minimization problem, i.e.,

min
θ
L̂(θ) = 1

2σ2
‖Ro −G (z̃, s0;θ)‖2 .

Naturally, we can update θ by gradient descent based on the
back-propagation (BP) algorithm [42] as follows,

θ ← θ − η ∂
∂θ
L̂(θ), (25)



Table 4. Quantitative results of user study experiments on different rain video clips.
Metrics Methods

RainSynComplex25 RainSynLigh25 NTURain Adobe Ours
Rating↑ 1.30± 0.66 2.72± 0.98 3.49± 1.02 4.02± 0.84 4.04± 0.82

Realism↑ 26.04 54.34 69.81 80.38 80.75

Table 5. A comparison of the number of model parameters (K) and
running time (s) among different methods.

Metrics Methods
DDN PReNet SpacCNN SLDNet S2VD

# Parameters (K) 57 169 477 166302 525
Time (s) 0.035 0.187 3.632 2.268 0.032

Temporal Dimension (Frames)

Training Process
Source Video

Figure 8. An illustation of the source and recovered rain videos.
From top to bottom: the 1st row is the source rain video, and the
2-4th rows are the recovered ones by our learned dynamic rain
generator after 3, 10 and 20 iterations. From left to right, 5 adja-
cent image frames in each video are displayed.

Temporal Deimension (Frames)

Sy
n1

Sy
n2

Figure 9. Two typical examples of generated rain videos by the
learned dynamic rain generator are shown, and each row corre-
sponds to a different initialization of s0 and {zt}.

where η denotes the step size. A detailed description of our
entire algorithm is presented in Algorithm 2.

B. Rain Generation Experiments

B.1. Evaluation on Rain Generation Task

Given any video purely containing a rain layer, the pro-
posed dynamic rain generator is able to learn the under-
lying dynamics of rains from the video. After that, with
the trained generator, we can not only recover the original
rain video but also generate many new realistic rain layers.
To verify this point, one rain layer video synthesized by
the commercial Adobe After Effects2 is downloaded from

2https://www.adobe.com/products/aftereffects.html

YouTube as a source video. We learn a dynamic rain gener-
ator from this video, and the visualization of recovered rain
video by our generator at different iterations are displayed
in Fig. 8. It can be seen that our generator can quickly re-
cover the rain layers of all image frames in the video only
with 20 iterations, which demonstrates its representation
power in this task.

Additionally, two synthesized rain videos by the learned
generator are shown in Fig. 9. To generate such videos, we
only need to randomly initialize the state variable s0 and
the innovation vectors {zt} in Eq. (16) from Gaussian dis-
tribution, and then follow Eqs. (16) and (17) to output a
sequence of image frames. The vivid rain videos shown in
Fig. 9 indicate that our generator indeed captures the intrin-
sic generative laws underlying the source video. Therefore,
it can be used to represent the rain layers in our proposed
deraining framework presented in Sec. 3.1 of the main text.

B.2. User Study

While we have displayed the synthesized rain layers by
our dynamic generator in Fig. 9, now a user study is further
conducted to quantitatively evaluate their realism. Three
currently widely-used benchmark data sets are considered
as compared methods, including RainSynComplex25 [35],
RainSynLigh25 [35] and NTURain [6]. The rain layers of
them are obtained as follows,

R = maxc(Y − X ), (26)

where Y and X denote the rainy video and the corre-
sponding clean video, respectively, maxc(·) is the element-
wise maximization operation along the channel dimension
(RGB). Besides, since our generator is trained on one
source video downloaded from YouTube, which is produced
by the commercial Adobe After Effects3, thus we also re-
gard it as one compared method.

For visual comparisons, some typical image frames of
these four rain videos and the synthesized rain video by our
generator are shown in Fig. 11. To evaluate their realism,
we present these five video clips in a random order, each
with 100 continuous frames, to 53 recruited participants,
and then ask each of them to rate how real every video clip
is, using a 5-point Likert scale. Therefore, we finally get
53 ratings for each video clips as shown in Fig. 10. And
the corresponding mean ratings and realism scores are list
in Table 4, in which the realism scores are calculated by

3https://www.adobe.com/products/aftereffects.
html

https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/aftereffects.html
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Figure 10. User study of rain realism. The y-axis represents the
rating of the statement Rain in the video clip looks realistic. Our
generated rain layers are even a little bit better than those of the
commercial Adobe After Effects.

converting the ratings to the range [0,1]. It can be easily
seen that the video clips generated by our proposed gen-
erator achieve the best results, even a little bit better than
that of the commercial Adobe After Effects software, which
indicates the effectiveness of our dynamic rain generator.
Therefore, it is promising and reasonable to use this dy-
namic generator to fit the rain layers in our proposed video
deraining method of the main text.

C. Model capacity and running time of S2VD

In this part, we compare the model capacity (number
of model parameters) and running time of different deep
learning (DL)-based methods. For the number of parame-
ters of the proposed S2VD, we only consider the parame-
ters in the derainer f(·;W ), since only the derainer is de-
sired in the testing phase after training. The running time
evaluation was performed on a computer with 6-cores In-
ter(R) Core(TM) i7-8700K CPU (3.3GHz) and a Nvidia
GTX 1080Ti GPU. Specifically, it is tested on a rainy video
that contains 60 image frames with spatial size 480 × 640
pixels, and the average time on each frame is regarded as
the running time for each method. And the time for data
transfer between CPU and GPU is not counted during cal-
culation.

The results are listed in Table 5. We observe that: 1) On
the whole, the video deraining methods have more param-
eters than the single image deraining methods. Comparing
with two state-of-the-art video deraining methods, the num-
ber of parameters of our S2VD is very close to SpacCNN
and about 300 times smaller than SLDNet. 2) As for the
running time, our S2VD is at least 70 times faster than SLD-
Net and SpacCNN, which is mainly because our model uses
a simple architecture for the derainer network. Considering

the superiorities in both model capacity and running time,
S2VD is very competitive and appealing for real applica-
tions.
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Figure 11. Visualization of the rain layers in different data sets. From top to bottom: the rain layers contained in RainSynComplex25,
RainSynLigh25 and NTURain, the rain layers generated by Adobe After Effects and our trained dynamic rain generator.


