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the curse of dimensionality problem. But of course, the most important question remaining
is how to relate inverse regression to forward regression. To fill up the gap, we shall derive
Theorem 2.1 in section 2.6, which is the foundation of the SIR theory.

Generally speaking, inverse regression factorizes the joint density of x and Y into the
condition density h(x|y) and the marginal density k(y). While only E(x|Y ) is considered in
this chapter, other quantities can be utilized as well. For example, in later chapters, we shall
also discuss how to use conditional covariance cov(x|Y = y) for extending the basic SIR
algorithm.

2.2 An algorithm of SIR.

Let (y1, x1), · · · , (yn, xn) be the original data set with (p+1) variables and n cases. Imagine
that they have been stored as illustrated in Table 2.1. The algorithm of SIR consists of the
following steps.

Table 2.1: ORIGINAL DATA SET

Y1 x1(= (x11, x12, · · · , x1p)
′)

Y2 x2(= (x21, x22, · · · , x2p)
′)

Y3 x3(= (x31, x32, · · · , x3p)
′)

Y4 x4(= (x41, x42, · · · , x4p)
′)

Y5 · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Yn xn(= (xn1, xn2, · · · , xnp)
′)

Table 2.2: SORTING by Y and SLICING.

Y(1) x(1)(= (x(1)1, x(1)2, · · · , x(1)p)′)
Y(2) x(2)(= (x(2)1, x(2)2, · · · , x()2p)

′)
Y(3) x(3)(= (x(3)1, x(3)2, · · · , x(3)p)′)
Y(4) x(4)(= (x(4)1, x(4)2, · · · , x(4)p)′)
Y(5) · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Y(n) x(n)(= (x(n)1, x(n)2, · · · , x(n)p)′)

kcli

kcli



2.2 An algorithm of SIR. 15

Step 1. Sort the data by Y . This is illustrated by Table 2.2.

Step 2. Divide the data set into H slices as equally as possible. Let nh be the number
of cases in slice h. In Table 2.2, slices are separated by bold lines. The number of slices H
is a user-specified parameter. For example, we find between 10 to 20 slices to be reasonable
for a sample of size n = 300. As to be discussed later, there are theoretical results indicating
that SIR outputs do not change much for a wide range of H .

Step 3. Within each slice, compute the sample mean of x, x̄h = n−1
h

∑
(i)∈slice h x(i).

Table 2.3 shows the slice means for both Y and x. Note that SIR uses Y values only to create
slices. Once slices are formed, they can be discarded. Thus although the slice means of Y
are shown in Table 2.3, they need not be computed.

Table 2.3: Slice means.

Ȳ1 x̄1(= (x̄11, x̄12, · · · , x̄1p)
′)

Ȳ2 x̄2(= (x̄21, x̄22, · · · , x̄2p)
′)

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

ȲH x̄H (= (x̄H 1, xH 2, · · · , xH p)
′)

Step 4. Compute the covariance matrix for the slice means of x, weighted by the
slice sizes:

�̂η = n−1
H∑

h=1

nh(x̄h − x̄)(x̄h − x̄)′

Here x̄ denotes sample mean of x̄ = n−1∑n
i=1 xi .

Step 5 . Compute the sample covariance for xi ’s, �̂x = n−1∑n
i=1(xi − x̄)(xi − x̄)′.

Step 6. Find the SIR directions by conducting the eigenvalue decomposition of �̂η
with respect to �̂x:

�̂ηβ̂i = λ̂i�̂xβ̂i (2.1)

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p

The i -th eigenvector β̂i is called the i -th SIR direction. The first few SIR directions can
be used for dimension reduction. They serve as the coefficients linking the input nodes to
the intermediate nodes in Figure 1.7. For further analysis, the following additional steps are
helpful.

Step 7. Project x along the SIR directions; that is, use each SIR direction to form a
linear combination of x. We shall call β̂ ′1x the first SIR variate, β̂ ′2x the second SIR variate,
and so on. Table 2.4 shows the reconstructed data after projection. Compared to Table 2.1,
this amounts to only a change in the coordinate system of the regressor.
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16 Sliced Inverse Regression: Basics

Table 2.4: Y and SIR variates

Y1 β̂ ′1x1, β̂
′
2x1, · · ·

Y2 β̂ ′1x2, β̂
′
2x2, · · ·

Y3 β̂ ′1x2, β̂
′
2x3, · · ·

Y4 β̂ ′1x4, β̂
′
2x4, · · ·

Y5 · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Yn β̂ ′1xn, β̂
′
2xn, · · ·

Step 8. Plot Y against the SIR variates. These 2-D or 3-D plots offer a graphical
summary useful for revealing the regression structure. We shall argue that under fairly gen-
eral conditions, these plots are more informative than other scatterplots of Y against any
projections of x.

2.3 SIR and principal component analysis.

It is easier to remember the eigenvalue decomposition step of SIR by standarizing x before
analysis. For now, suppose that the covariance of x = (x1, · · · , xp)

′ is an identity matrix
I . In other words, all regressor variables xi , i = 1, · · · , p have the same variance (=1) and
are uncorrelated with each other. Then on the rightside of the equality in (2.1), the matrix
�̂x can be removed. Thus Step 6 is merely the principal component analysis applied to the
slice means of x in Table 2.3. We can summarize SIR as follows: (1) partitioning the cases
into H groups according to the Y values; (2) finding the H slice means of x ; (3) applying a
principal component analysis on slice means of x.

It is important to remember that our use of principal component analysis differs from
the conventional way. We use Y to form slices while the conventional way did not use any
information from Y at all.

SIR is invariant under affine transformation of x. We can always find a new coordinate
to standardize x first. Suppose A is an invertible matrix so that

z = Ax, cov(z) = I

An example is to take A as �̂−1/2
x ; but there are better ones for saving time in computing. The

covariance matrix for the slice means of z is equal to A�̂ηA′. Let v̂i be the i -th eignevalue :

A�̂ηA′v̂i = λ̂i v̂i

Multiplying both sides by A−1 and using the relationship that A�̂x A′ = I , we can rewrite
the above equation as �̂η(A′v̂i) = λ̂i�̂x(A′v̂i). Now comparing with (2.1), we see that
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Figure 2.6: Contour Plot of y = g(β ′x) and SIR.

dimensional affine subspace which can be related to the e.d.r. space.

Theorem 2.1. Under Condition (1.1) of Chapter 1 and the Linear design Condition (2.2) to
be given next, the centered inverse regression curve E(x|y)− Ex is contained in the linear
subspace spanned by �xβk, k = 1, ..., K , where �x denotes the covariance matrix of x.

(L.D.C.) Linear Design Condition.

For any b in R p, the condi tional expectation E(b′x|β ′1x, ..., β ′K x)

i s linear in β1x, · · · , β ′K x ; that is, f or some constants co, c1, ..., cK ,

E(b′x|β ′1x, ..., β ′K x) = co + c1β
′
1x+ ...+ cKβ

′
K x . (2.2)

(L.D.C.) is satisfied when the distribution of x is elliptically symmetric; for example,
the normal distribution. But elliptic symmetry is NOT is necessary condition for (L.D.C)
to hold. As to be discussed in a later chapter, this condition is not as restrictive as it may
appear. We shall argue that the violation of this condition is often mild and the bias of SIR
is not large.

A proof of Theorem 2.1 will be given in Section 2.7.
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It is easier to remember Theorem 2.1 for the special case that x has been standardized to
z = Ax by some invertible matrix A so that Ez = 0, cov(z) = I . We can rewrite (1.1) of
chapter 1 as

Y = g(θ ′1z, · · · , θ ′K z, ε) (2.3)

where θ ′i = β ′i A−1.

Corollary 2.1. Assume that (L.D.C.) holds. Then for model (2.3), the standardized inverse
regression curve E(z|Y = y) is contained in the space spanned by the standarized e.d.r.
directions θi , i = 1, · · · , K .

As a random vector, E(z|Y ) has a covariance matrix cov(E(z|Y )). By Corrollary 2.1,
this matrix is seen to be degenerate in any direction orthogonal to the θk’s. Therefore, the
eigenvalue decomposition

cov(E(z|Y ))vi = λivi , i = 1, · · · , p (2.4)

λ1 ≥ · · · ,≥ λp

must give no more than K nonzero eignevalues. All eigenvectors vi with nonzero eigenvalues
must fall into the standardized e.d.r. space.

Denote the random vector E(x|Y ) by η and the covariance matrix of η by �η;

�η = Cov(E(x|Y ))

Since Cov(E(z|Y )) = Cov(E(Ax|Y )) = A Cov(E(x|Y ))A′ = A�ηA′, (2.4) can be written
as

A�η A′vi = λivi

Multiplying both sides by A−1, this gives

�η(A
′vi) = λi A−1vi = λi(A

−1(A′)−1)(A′vi)

Denote A′vi by bi . We have derived the following eigenvalue decomposition :

�ηbi = λi�xbi (2.5)

λ1 ≥ · · · ≥ λp

We shall refer to the eigenvalue decomposition (2.5) as the population version of SIR. There
are no more than K non-zero eigenvalues. We shall call eigenvector bi the population version
of a SIR direction (for λi �= 0only). Since vi falls into the standardized e.d.r. space, it is
a linear combination of θk = A−1βk, k = 1, · · · , K . Therefore, bi can be written as linear
combination of βk, k = 1, · · · , K . The following corollary is a summary of this conclusion.
It establishes the Fisher consistency for the population version of SIR.

Corollary 2.2. Assume that (L.D.C) holds. Then for model (1.1) of Chapter 1, the
population version of the SIR direction bi falls into the e.d.r. space.

It is easy to compare the population version of SIR (2.5) with the sample version (2.1 ).
We can interpret the slice mean xh obtained at Step 2 of the SIR algorithm in Section 2.1
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24 Sliced Inverse Regression: Basics

as an estimate of E(x|Y = y) for y falling within the interval associated with slice h. The
matrix �̂η given in Step 3 is a natural estimate for the covariance matrix �η.

Remark. We estimate E(x|Y ) by a step function consisting of xh, h = 1, · · · , H . It is
feasible to use more sophisticated nonparametric regression methods such as kernel, nearest
neighbor, or smoothing splines to yield a better estimate of the inverse regression curve. This
is especially attractive for relatively small samples. However, intuitively speaking, since we
only need the main orientation ( but not any other detailed aspects ) of the estimated curve,
possible gains due to smoothing are not likely to be substantial for large samples.

2.7 Proof of Theorem 2.1

We shall give the proof for the case the K = 1 first. Assume that Ex = 0 without loss of
generality. We want to show that the vector E(x|y) is proportional to�xβ. The key argument
is by conditioning :

E(x|y) = E(E(x|β ′x, ε)|y) = E(E(x|β ′x)|y) (2.6)

Now the (L.D.C) together with the assumption Ex = 0, implies that

E(x|β ′x) = [(var(β ′x))−1cov(x, β ′x)]β ′x (2.7)

= [(var(β ′x))−1�xβ]β ′x

Here the term inside the brackets following the first equality is a simple application of the
formula for the slope of the simple linear regression of each component of x against the
variable β ′x. Let k(y) = (var(β ′x))−1 E(β ′x|y). It follows that

E(x|y) = k(β ′)|y)�xβ

which is proportional to �xβ as desired.
For the case that K is larger than 1, a formula for E(x|β ′1x, · · · , β ′K x) is also not hard to

find. First let B = (β1, · · · , βK ), which is a p by K matrix.

E(x|β ′1x, · · · , β ′K x) = E(x|B ′x)
= [cov(B ′x)−1cov(B ′x, x)]′B ′x
= [(B ′�x B)−1 B ′�x]′B ′x (2.8)

Here the first bracket term is due to the multiple linear regression of each component of x
separately against the K-dimensional variable B ′x. Let k(y) = (B ′�x B)−1 E(B ′x|y), a K
dimensional vector for each fixed y. Then from (2.6) we see that

E(x|y) = (�x B)k(y)

which shows that E(x|y) falls into the linear space generated by �xβk’s, as desired.
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