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Figure 1.4: A Regression Diagram for Low Dimensional Problems.

analysis.
As we have seen, the role of graphics is quite critical in the routine practice of regression

analysis. But it only works when the number of regressors is small, say one, two, or three.
With two regressors, we can use 3-D techniques to display the data pattern between Y and
x. With three regressors, this is getting harder, although it still can be done with the help of
color as the fourth dimension for example. But what to do with three or more regressors?
We can certainly plot two of them again Y each time for example. But this task could
become extremely laborious. For p = 10, we already have 45 such combinations. It is not
clear how to effectively put together all information from different plots. Yet the coordinate
variables are not the only choices for inspecting relationship among variables. Sometimes
linear combinations can be more informative. But this only accelerates the overloading of
plot inspection. In summary, the effectiveness of such preliminary graphical inspection is
severely impaired as the dimension gets higher.

For larger dimensional problems, empirical model building often begins with multiple
linear regression (for continuous Y ). It is of course hard to believe that this overly-simplied
model can prevail under most situations. But there is no obvious better alternative. What we
can count on is no more than the rationale that any nonlinear function may be approximately
linear within a suitable domain. How true this assumption is depends on each application
and it is extremely hard to tell in advance; see Chapter 10 however.

It appears that in order to maintain the spirit underlying the regression paradigm as illus-
trated in Figure 1.4, we have to reduce the regressor dimensionality first.

kcli

kcli

kcli



1.3 Principal component analysis. 7

1.3 Principal component analysis.

Each time when the issue of dimension reduction is mentioned, one would normally associate
it with Principal component analysis (PCA). No doubt that PCA is perhaps the most popular
procedure of dimension reduction. But what does PCA do in regression? How helpful is it?
Before discussing such issues, let’s take a brief look at the procedure itself first.

PCA projects the high dimensional data to a lower dimensional space with the hope that
the essential structure in the original data can be kept as much as possible. The projected
space is chosen so that the points can spread out as much as possible.

Let x be the p-dimensional variable of interest. The first principal component is a linear
combination b′x of the coordinate variables of x that has the largest variance among all b
with unitary length:

max
||b||=1

b′�xb

Here �x denotes the covariance matrix of x.
After finding the first direction, say b1, we repeat the same procedure by restricting to

those “uncorrelated” directions b, namely those that yield projections uncorrelated with b′1x
: 0 = cov(b′x, b′1x) = b′�xb1. This gives the second principal direction b2. Continue this
procecess to get all other directions, b3, · · · , bp. Denote the the variance of b′i x by λi . It can
be shown that

�xbi = λi bi

Thus to find the principal directions we need only to conduct the eigenvalue decomposi-
tion on the covariance matrix of x. The sample version of PCA is carried out by replacing
�x with the sample covariance matrix �̂x.

Eigenvalues of PCA often decrease rapidly. When this happens, it shows that most of
the data spread out very well along the first few directions. Thus it seems hopeful that the
most interesting structure in the data may show up along these directions. But this is not a
guarantee. In spite of the richness in the literature of PCA, not much theoretical work has be
done regarding how successful PCA is in finding nonlinear structure. We shall come back to
this issue in Chapter 8 later.

In application, one often needs to rescale each coordinate variable appropriately before
applying PCA. One frequently-used rescaling factor is the standard deviation. This amounts
to use correlation matrix instead of the covarinace matrix for eigenvalue decomposition.

1.4 Effective dimension reduction in regression.

To reduce dimensionality in regression problems, one possibility is to apply PCA on x first,
keeping the first few principal components for modeling the relationship with Y . This is
called the principal component regression. The result is sometimes helpful, sometimes not.
One simple explanation is that this way of reducing the regressor dimensionality is totally
independent of the output variable Y . Thus any two different data sets would always reduce
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8 A Model for Dimension Reduction in Regression

to the same linear combinations, as long as the input variables x have the same distributions.
This is so, even if the relationship between x and Y is not the same for the two data sets.

To address the dimension reduction issue in regression, one must not treat x separately
from Y . This is what we shall develop in this section. At the center of the scene will be the
notion of effective dimension reduction (e.d.r.). This notion conveys the desirable situation
in which one can reduce the dimension of x without losing any information which is essential
in predicting Y .

1.4.1 The model.

Li(1991) introduced the following model

Y = g(β ′1x, β ′2x, ..., β ′K x, ε). (1.1)

Here we consider Y as a univariate output variable. The case of multivariate output will
be treated in Chapter 17. The dimension of x is denoted by p. The random error ε is
independent of x, but its probability distribution is unknown. Our primary interest is on the
K p-dimensional vectors β1, · · · , βK .

It is easier to see how this model is related to dimension reduction by comparing Figure
1.5 to Figure 1.6. Figure 1.5 shows the most general situation in regressing Y on x :

Y = f (x1, · · · , xp, ε)

On the top of the chart, there are p input nodes together with a node for random error ε. The
unknown function f is represented by the black box in the middle, leading to the output node
Y at the bottom. Compared to this most general situation, Figure 1.6 adds an intermediate
layer of nodes. These intermediate nodes combine data from the input nodes linearly using
weights indicated along the line segments. From this chart, it is clear that the relationship
between x and Y is determined only through β ′1x, · · · , β ′K x; K = 2 is shown there. The
black box represents the unknown function g in (1.1).

• • •x1 x2 x3 xp

ε

y

f (x1, x2 ,L ,xp )

Figure 1.5: General Regression Model.
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1.4 Effective dimension reduction in regression. 9

• • •x1 x2 x3 xp

ε

y

• • •β1' x β2' x βk ' x

g(β1' x,β2' x,L , βk ' x)

Figure 1.6: Model 1.1.

If g is known, then (1.1) is not much different from a simple neural net model, or a
nonlinear regression model. But what makes (1.1) special is that g is unknown and can
be completely general. This leads immediately to the question of how to estimate the beta
vectors. As it turns out, there are several ways to proceed and this is what we shall study in
this book, starting from Chapter 2. For now, let’s first take a look at many commonly used
models in regression. They all belong to (1.1), each with a different specification about g.

1.4.2 Special cases.

1. Multiple Linear regression.
y = α + β ′x+ ε (1.2)

2. Box-Cox transformation..
h(y) = α + β ′x+ ε (1.3)

where h(y) is a power transformation :

h(y) = (yλ − 1)/λ

3. Transformation-inside.
y = g(β ′x)+ ε (1.4)

4. Transformation-both-sides
h(y) = g(β ′x)+ ε (1.5)

5. Heterosedasticity (Taguchi).

y = α + β ′1x+ εg(β ′2x) (1.6)

There are many more special cases of (1.1). Some of them will be encountered in later
chapters. We turn to the discussion on the β vectors.
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10 A Model for Dimension Reduction in Regression

1.4.3 The e.d.r. directions.

The notion of e.d.r. direction plays a critical role in the methodological development of
SIR/PHD.

Definition 1.1 Under (1.1), the spaceB generated by β1, · · · , βK is called the e.d.r. space.
Any non-zero vector in the e.d.r. space is called an e.d.r. direction.

Observe that by changing g suitably, (1.1) can be reparametrized by any set of K linearly
independent e.d.r. directions. Thus it is the e.d.r. spaceB that can be identified; the individual
vectors β1, ..., βK themselves are not identifiable (unless further structural conditions on g
are imposed). Finding the e.d.r. space or a subspace of it will be our primary goal.

This problem is different from the estimation of regression coefficients. The difference
can be manifested by reconsidering the multiple linear Model under the following way of
reparametrization :

y = α + b(β̃ ′x)+ ε
where we restrict that β has the unit length and b is nonnegative.

Note that when b equals 0, β̃ is not well-defined. The roles of β̃ and b have been mixed
up in (1.2). The vector β̃ is used to identify the relative contribution or importance from
each factor. As we shall see later, the estimation of β̃ is less sensitive to the link violation.
Estimation of the e.d.r. space can be viewed as equivalent to the estimation of β̃ up to a
sign. From the visualization point of view, the sactterplot for y against β̃ is as informative
as that for y against β. Once we identify an e.d.r. direction, we can standardize it to have a
unit length. To further decide the sign, we can simple choose the one that yields a positive
correlation with Y . If we happen to choose the wrong one, we can usually find that out after
a glance at the scatterplot : the regression line is going down. The scalar factor b determines
the size of R-squared.

1.4.4 The rationale.

All models are imperfect in some sense. Like others, (1.1) should be interpreted as an ap-
proximation to reality. However, the fundamental difference between this and other statis-
tical models is that (1.1) takes the weakest form to reflect our hope that a low dimensional
projection of a high dimensional regressor variable contains most of the information that can
be gathered from a sample of a modest size. (1.1) does not impose any structures on how the
projected regressor variable effects the output variable. In addition, we may vary K to reflect
the degree of the anticipated dimension reduction. At K = p, (1.1) becomes a redundant as-
sumption. By comparison, most regression models assume K = 1 with additional structures
on g.
A philosophical point is to be emphasized here : the estimation of the projection directions
can be a more important statistical issue than the estimation of the structure of g itself. In
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1.4 Effective dimension reduction in regression. 11

fact, the structure of g is impossible to identify unless we have other scientific evidence be-
yond the data under study. One can obtain two different versions of g to represent the same
joint distribution of y and x. Thus what we can estimate at most are statistical quantities such
as the conditional mean or quantiles of Y given x. On the other hand, at the beginning stage
of data analysis when one does not have a fixed objective in mind, the need for estimating
such quantities is not as pressing as that for finding ways to simplify the data. Our formu-
lation of estimating the e.d.r. directions is one way to address such a need in data analysis.
After finding a good e.d.r. space, we can project data to this smaller space. Then we are in
a better position to identify what should be pursued further : model building, response sur-
face estimation, cluster analysis, heteroscedasticity analysis, variable selection, or inspecting
scatterplots (or spinning plots) for interesting features. After dimension reduction, if we want
to estimate the response surface for example, then we can apply nonparametric smoothing,
Box-Cox transformation, or other techniques. Needless to say, the door is open for further
serious work.

1.4.5 An equivalent version.

(1.1) is equivalent to :

the conditional distribution of y given x depends on x

only through the K dimensional variable (β ′1x, ..., β ′K x)

or, to put it slightly differently,

conditional on β ′1x, · · · , β ′kx, y and x are independent.

The reduced variable, (β1x, · · · , βK x), is as informative as the original x in predicting y.
Note that this version does not seperate the role of g from ε in (1.1). In fact, there are

more than one way to construct g and ε. For instance, if we denote the c.d.f. for the con-
ditional distribution of Y given β ′1x = θ1, β

′
K x = θK by Fθ1,···,θK , (·), then we can take

g(β ′1x, · · · , β ′K x, ε) to be F−1(β ′1x, · · · , β ′K x, ε) and assume that ε follows the uniform dis-
tribution on [0, 1]. For the special case 1 of section 1.4.2, the multiple linear model, this
leads to the following expression:

Y = �−1(a + β ′x+ ε∗)
where � is the c.d.f. of the original random variable ε. The distribution of ε∗ is uniform on
[0, 1].

Strictly speaking, for any given joint distribution of Y and x, our definition of the e.d.r.
space is not mathematically rigorous. This is because if (1.1) holds for a set of vectors
β1, · · · , βk , then we can always add another vector to enlarge the e.d.r. space without vi-
olation (1.1) or the equivalent form mentioned above. Of course, the key in the notion of
e.d.r. space is to find the one with the smallest dimension. Now a question arises : is this
space unique ? Cook(1994) studied this question and it lead to a refinement to the defintion
1.1. It turns out that under certain regularity conditions, the e.d.r. space with the smallest
dimension is unique. We shall assume this is the case from now on.
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β̂i = A′v̂i . Therefore the SIR variates v̂′i z obtained from the standardarized regressor z are
the same as the SIR variates obtained from the original regressors, v̂′iz = v̂′i Axβ̂ ′i x.

2.4 Some simulation examples.

In each of the following examples, each regressor variable, x1, · · · , xp, and the error term ε

are generated independently from the normal distribution with mean 0 and variance 1. The
sample size n is 100 and the regressor dimension p is 5. The simulation is carried out in
Xlisp-stat. A program for implementing the SIR algorithm can be obtained by
http://www.stat.ucla.edu/ kcli. We take H = 10 slices in each example. A computer output
is given below.

; loading "sir-model.lsp"
; finished loading "sir-model.lsp"
> ; loading "sir-program.lsp"
; finished loading "sir-program.lsp"
> (def x(g-normal-rand 5 100))
X
> (def err(normal-rand 100))
ERR
> (def y (+ 5 (nth 0 x) (nth 1 x) (nth 2 x) err ))
y
> (def out-linear (sir-model x y))
==================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.55552 -0.518951 -0.523881 0.0125557 0.00506731
the second direction found by SIR:
(0.163475 -0.393415 0.141448 -0.879026 -0.213294
the third direction found by SIR:
(0.689774 -0.205839 -0.676929 0.191294 -0.278481
the companion output eigenvalues of SIR:
(0.788627 0.126048 0.0821447 0.0683831 0.0160881
the sum of all eigenvalues:
1.08129
================================================
OUT-LINEAR
> def y-trans (** y 2))
Y-TRANS
> (sir-mode x y-trans)
================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.55552 -0.518951 -0.523881 0.0125557 0.00506731
the second direction found by SIR:
(0.163475 -0.393415 0.141448 -0.879026 -0.213294
the third direction found by SIR:
(0.689774 -0.205839 -0.676929 0.191294 -0.278481
the companion output eigenvalues of SIR:
(0.788627 0.126048 0.0821447 0.0683831 0.0160881
================================================
#<Object: 5037498, prototype = SIR-MODEL-PROTO>
> (def y (/ (nth 0 x) (+ .5 (** (+ (nth 1 x) 1.5) 2))))
Y
> (sir-model x y)
================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.916301 0.126228 -0.0229527 0.0548278 -0.0519934
the second direction found by SIR:
(0.0451041 0.875115 0.250871 -0.0710619 0.00957446
the third direction found by SIR:
(-0.0178142 0.0438353 -0.0142057 0.637159 0.790221
the companion output eigenvalues of SIR:
(0.779919 0.642207 0.126759 0.0883023 0.0101885
the sum of all eigenvalues:
1.64738
================================================
#<Object: 5314930, prototype = SIR-MODEL-PROTO>
> (spin-plot (list (nth 0 x) y (nth 1 x))))
#<Object: 5297810, prototype = SPIN-PROTO>
>

Figure 2.0: A computer output
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18 Sliced Inverse Regression: Basics

Example 1. Linear model.

Y = 5+ x1 + x2 + x3 + 0x4 + 0x5 + ε
From the computer output, we see that the first eigenvalue (=.788) is quite large and the
first SIR direction (=(−.555,−.518,−.523, .012, .005)) is nearly proportional to the e.d.r.
direction (1, 1, 1, 0, 0). The scatterplot of Y against the first variate shows the linearity
relationship very well.

sirI-1

y

Figure 2.1: SIR View for Example 1. Linear Model.

Example 2. Transformation-outside model.

Y = (5+ x1 + x2 + x3 + ε)2

The data are taken from the first example with Y being changed by the square transforma-
tion. The output of SIR remains the same as before. This is to be expected because the
transformation is monotone (all Y values from Example 1 are positive) and only the ordering
of Y is used in SIR. SIR estimates the e.d.r. direction quite well. The plot of Y on the first
SIR variate reveals a hetroscedastic pattern - the variance of Y increases along the x-axis
direction.

Example 3. Transformation-inside model.

Y = (5+ x1 + x2 + x3)
2 + ε

In this example, Y is constructed with the x values and ε borrowed from Example 1. The
output of SIR shows that the e.d.r. direction is estimated well by the first SIR direction. The
SIR plot, Figure 2.3, reveals a pattern rather different from Figure 2.2.
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Figure 2.2: SIR View for Example 2. Transformation-Outside Model.
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Figure 2.3: SIR view for Example 2. Transformation-Inside Model.

Example 4. Rational function.

y = x1

0.5+ (x2 + 1.5)2
+ σε

For now, we only consider the noise-free case σ = 0. The dimension K of the e.d.r.
space is two. We still take H = 10. The output of SIR shows that there are two large
eigenvalues. The corresponding eigenvectors, (−.916, .126,−.022, .055,−.051) and
(.045, .875, .251,−.07, .009) match e.d.r. directions (1, 0, 0, · · ·) and (0, 1, 0, · · ·) closely.
The 3-D plot of Y against the first two SIR variates is shown in Figure 2.4(a)-(d) from a few
angles. This is nearly the same as the one given by plotting Y against the true e.d.r. variates,
x1 and x2, Figure 2.5(a)-(d). Fig 2.5(e) is the true response surface.
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Figure 2.4: SIR View for Example 4. Rational Function.

2.5 Contour plotting and SIR.

Before presenting the theory of SIR in the next section, we can use contour plots to illustrate
why SIR works well in finding e.d.r. directions. We begin by assuming p = 2, K = 1, and
there is no error term in (1.1). Thus the model can be expressed as

Y = g(b1x1 + b2x2)

The e.d.r. direction is β = (b1, b2)
′.

Contour plotting is a popular way of representing a real-valued function with two argu-
ments. In our daily life, we have encountered many contour plots such as weather maps for
temperature, atmosphere pressure, and so on. A contour of g consists of points (x1, x2) with
the same Y value. In our case, contours are straight lines perpendicular to the e.d.r. direction
β = (b1, b2)

′. Note that this property has nothing to do with the functional form of the uni-
variate function g. As it becomes clear soon, this is an important reason why SIR can find
e.d.r. directions without knowing the functional form of g. Figure 2.6(a) illustrates a contour
plot for β = (1, 1)′.

Now if x has a spherical distribution, normal with identity covariance for example, then it
is easy to find that data points for x would be symmetrically scattered between contour lines,
as shown in Figure 2.6(b). If we apply the SIR algorithm to data generated from this model,
then the slicing step will create parallel slots like those in Figure 2.6(a), and the averaging
step would give slice means which should fall near the line along the e.d.r. direction, as
marked by stars in Figure 2.6 ( c ). Now to find this line, we can apply PCA. This is what is
done at the eigenvalue decomposition step.

The story is slightly different for the case that the covariance matrix of x is not an identity.
In general, the shape of the x data points should look more like an ellipsoid. Thus points on
the opposite side of the e.d.r. direction within each slot is not symmetric. The slice means
will not fall on the 45o line. But we can show that they will fall along another line. Thus a
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Figure 2.5: Best View for Example 4. Rational Function.

Figure 2.5(e): Response surface of Example 4, Rational function.

straightforward PCA will find the wrong direction. This is why we need the term �̂x on the
right-side of (2.1) to make an appropriate adjustment.

2.6 Fisher consistency for SIR.

In this section, we shall establish the Fisher consistency property of SIR for finding e.d.r.
directions. Imagine either that our sample consists of the entire population or that the sample
size is infinitely large. Fisher consistency for a statistical estimation procedure describes the
desirable situation that the estimate produced must coincide with what we want to estimate.
Fisher consistency is just one way of saying that the procedure has no estimation bias (in
theory).

Now consider the trajectory of the inverse regression E(x|Y = y) as y varies. In general,
this draws a curve in R p. The center of this curve is located at E(E(x|Y )) = Ex. However,
the following theorem shows that under suitable conditions, this curve indeed lies on a K -
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