
Chapter 3

Sampling Properties of SIR

In this chapter, we discuss the sampling behavior of SIR. First we establish the root-n consis-
tency in Section 3.1. An asymptotic formula which describes how close the SIR directions
are to the e.d.r. space is given. Then we derive a chi-square test for determining the number
of significant nonzero eigenvalues. This provides an estimate of the reduced dimension K
in the dimension reduction model (1.1) of chapter 1. In Section 3.3, we discuss the issue of
how many slices should be used. Other sampling aspects of SIR are given in Section 3.4.

3.1 Consistency of SIR.

We shall assume that H is fixed, and the range of Y is partitioned into H intervals, Ih, h =
1, · · ·. Slice h consists of cases with xi ∈ Ih .

3.1.1 The root n rate.

Let ph = P{y ∈ Ih}, mh = E(x|y ∈ Ih). Elementary probability theory shows that x̄h

converges to mh at rate n−1/2. Let V be the matrix �H
h=1 ph(mh − Ex)(m− Ex)′. It is clear

that the �̂η converges to V at the root n rate. Let b j be the jth eigenvector for the eigenvalue
decomposition:

V b j = λ j�xb j

The SIR direction β̂ j , is seen to converge to the corresponding eigenvector b j at the root n
rate. Now we use Theorem 2.1 and the simple identity mh = E(E(x|y)|y ∈ Ih) to see that
b j will fall in the e.d.r. space.

The case that the range of each slice varies in order to ensure an even distribution of
observations is related to the following choice of intervals:

Ih = (F−1
y ((h − 1)/H ), F−1

y (h/H )),

where Fy(·) is the c.d.f. of y. The root n consistency result still holds.
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Why SIR is still consistent when the number of slices H is large?

Consider the case that H = n=L, so that there are L cases in each slice. We shall

study what happens if L is �xed when n tends to the in�nity. In particular, we want to

know what �̂� converges to �rst.

Two basic facts are needed. The �rst one is an ANOVA indentity :

�̂x = �̂� + �̂e

where �̂e is average of within-slice covariance :

�̂e = H�1

HX

h=1

�̂h

�h = L�1
X

i in sliceh

(xi � �xh)(xi � �xh)
0

Here recall again

�̂x = n�1
X

(xi � �x)(xi � �x)0

�̂� = H�1

HX

h=1

(�xh � �x)(�xh � �x)0

From this identity, it is enough to �nd out what the average within-slice covariance,

�̂e, converges to.

The second fact is that in order to get an unbiased estimate of any covariance, we

should not use the sample size itself. The correct denominator should be the sample size

minus one. Of course this does not matter if the sample size is large. But for the situation

considered here, it is critical because within each slice, there are only a �xed number of

cases L,which could even be as small as 2.

Using the second fact and the law of large number (as H tends to in�nity), it is

intuitively clear that �̂e converges to

E(
L� 1

L
cov(xjY )) =

L� 1

L
E(cov(xjY ))

Now the population version of ANOVA states that

Cov(x) = cov(E(xjY )) +E(cov(xjY ))

To simply the notations, we can rewrite this as

�x = �� +�e

Since it is clear that �̂x converges to �x, putting things together, we see that �̂�

(= �̂x � �̂e) coverges to

�x �
L� 1

L
�e = L�1�x +

L� 1

L
��
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Now recall the population SIR :

��bi = �i�xbi

It follows that

(L�1�x +
L� 1

L
��)bi = (L�1 +

L� 1

L
�i)�xbi

So we see that asymptotically, the eignevctors from the SIR algorithm remain the same,

even if the number of slices H increase in a way that within each slice there are only a

�xed number of cases.

The eignevalues does not converge to the corresponding population values though. So

if L is small, it may make sense to estimate the true eignvalues by solving

�̂i = L�1 +
L� 1

L
�i

However, this may lead to a negative value. So the problem is not completely resolved.

Nevertheless, an interesting message is that if the eignevalues from the SIR output are

smaller than the reciprocal of the number of cases per slice, then the corresponding SIR

components would not be signi�cant.
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3.2 Eigenvalues. 29

columns of H = 10, in Tables 3.2 and 3.3. ( the conclusions are similar for other H ’s). For
λ̄(8), the numbers are close to the rescaled χ 2 values. Thus guided by the χ2, not very often
we will falsely conclude that the third component is real (or mistakenly claim that there are
at least 3 components in the data).

Turning to λ̄(9), we expect the numbers to be larger than what are given by using the
rescaled χ 2 that falsely assumes only one component in the model. For the rational function
model with σ = .5, this is clearly so, as we see that the 1% quantile of λ̄(9) is close to the
99% quantile of the rescaled χ 2. Thus in this case, we correctly infer that there are at least 2
components in the model in each of the 100 replicates. As confirmed by the corresponding
R2(β̂2) reported in Table 3.3, high value of λ̄(9) leads to good performance of β̂2 as an e.d.r.
direction. On the other hand, the distribution of λ̄(9) for the quadratic model with σ = 1
shows a substantial overlap with the rescaled χ 2. This is reflected in the relatively lower
average and higher standard deviation of R2(β̂2) in Table 3.2. But a positive point is that
by comparing λ̄(9) with the rescaled χ 2, we realize that our data do not strongly support the
claim that the second component is real.

Finally, λ̄(10) is well above the associated χ 2, assuring the high average and the low
standard deviation of R2(β̂1) in all cases.

3.2.1 Chi-squared test.

As argued before, in order to be really successful in picking up all K dimensions for re-
duction, the inverse regression curve can not be too straight. In other words the first K
eigenvalues for V must be significantly different from zero compared to the sampling error.
This can be checked by the companion output eigenvalues.

The asymptotic distribution of the average of the smallest p − K eigenvalues, denoted
by λ̄(p−K ), for V̂ can be derived, based on perturbation theory for finite dimensional spaces
(Kato 1976, chapter 2). For normal x, we have the following result.

Theorem 3.1. If x is normally distributed, then n(p − K )λ̄(p−K ) follows a χ2 distribution
with (p − K )(H − K − 1) degrees of freedom asymptotically.

3.2.2 Eigenvalues and the assessment of K .

An outstanding dilemma facing all data-analysts is that the more you screen, the more you
may find. Good or bad ? While it is desirable to discover as many patterns as possible so one
can have a better chance to develop a new theory, this also increases the chance of a false
alarm. It is helpful to know whether an observed pattern is spurious or not. Yet this is by no
means an easy task, and there is not much discussion on this issue in the literature. For our
problem, how many components SIR finds are really there ? The output eigenvalues in the
eigenvalue decomposition step of SIR are helpful in answering this question.

First observe that following from Theorem 3.1, we see that theoretically the smallest
p − K eigenvalues have to be 0. But in order to be really successful in picking up all K
dimensions for reduction, the inverse regression curve can not be either degenerated or close
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30 Sampling Properties of SIR

to being degenerated. In other words the first K eigenvalues for the covariance matrix must
be significantly different from zero compared to the sampling error. This can be checked
by using the companion output eigenvalues of SIR. In the last section, we have derived the
asymptotic distribution of the total of the smallest p−K eigenvalues. We may use that result
to give a conservative assessment of the number of components in the model.

For j = 0, 1, 2, ..., we define

P-value j = P{χ 2
(p− j )(H− j−1) ≥ n(n − p)λ̄(p− j )}

This sequence of P-values can be used to indicate how many components are found by SIR.
A simple forward selection procedure is to start with j = 0. If P-value j is less than say
.05, then we may claim that there are at least j + 1 components. Go to the next j till we
fail to make the claim. Of course, we may have many other selection procedures to use.
Mallows(1973, Technometrics) pointed out the merit of inspecting the plot of the whole
sequence of the Cp measures. His point applies to our case too. Thus a sudden jump from a
small P-value to a large P-value serves as a better indication of where to stop. We also found
the sequence of eigenvalues themselves are often good indicators of how many components
found by SIR are worth of close inspection. Typically a value more than .25 is noteworthy.
Later on, we shall interprete eigenvalues as R-squared values for multiple linear regression
of some suitable transformations of y against x.
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32 Applying Sliced Inverse Regression

sirI-1

y

Figure 4.1: SIR view for Worsted yarn Data

the pattern is linear. Note that SIR is invariant under monotone transformation of y. We will
come back to the transformation aspect of SIR later on.

4.2 Variable selection.

Boston Housing data has thirteen regressors. This means that each SIR direction would have
13 coefficients. An immediate concern how to interpret so many coefficients properly ? This
general issue is discussed in this section.

First of all, Each variable has its own unit so a small coefficient does not mean that
the corresponding variable should be ignored. A quick remedy is to report the result after
standardizing each variable to have the same variance(=1). But this may not be enough.

In order to obtain a parsimonious description for the estimated e.d.r. space, it is appropri-
ate to select a small subset of regressors for conducting SIR. Just like the variable selection
in multiple linear regression, there are several ways of doing it. The following is one simple
recommendation.

(1). Conduct SIR with all regressor variables included. Let b̂1, .., b̂k be the estimated
e.d.r. directions.

(2). Then find a projection from a small subset S1 of regressors, denoted by b̂′s1x, which is
still reasonably close to the first projection b̂′1x with ,say, an R-square value of 90% (which
amounts to about 18.5o difference between the two projection angles) or better. This can
be done by either forward or backward selection procedure in multiple linear regression by
treating b̂′1x as y.

(3). After S1 is selected, we then check if using variables from S1 is good enough to
approximate the second projection b̂′2x or not. If not, we should enlarge it and continue to
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the next projection. Let S be the final set of variables selected.

(4). Apply SIR again, this time using only the variables in S.

(5). If necessary, go through the variable selection procedure (2)-(4) again.

Note it is a good practice to compare the plot found from the reduced variables with the
original one. If substantial difference is found, then some caution should be taken.

4.3 Boston housing data.

We first apply SIR to the Boston Housing Data ( described in Chapter 1). with H , the
number of slices, ranging from 10 to 30. The result, based on H = 15, is reported in
Figures 4.2(a)-(d). As we rotate the cloud along the y-axis, it looks like a helix or slide. A
further inspection of the eigenvalues , .82, .48, .20, .08, .05, · · ·, reveals that there are three
significant components. Figure(4.3) provides the scatter-plot matrix for y and these three
projection variables.

(a)

(c)

(b)

(d)

Y

SIR1 SIR2

Y

SIR1SIR2

Y

SIR2SIR1

SIR1

Y

SIR2

Figure 4.2: SIR view for Worsted yarn Data
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34 Applying Sliced Inverse Regression

4.3.1 Crime rate.

When we carry out the variable selection procedure as described above ( forward variable
selection is used), the result is not illuminating. For the first projection, we can identify
the main contributor to be x13, proportion of poor, with x6, average number of rooms in
houses, as a close runner-up. Primary contributors of the second projection variable are
harder to identify. The top candidate x1, crime rate, leads seven other competing variables
only marginally.

We take a closer look at the relationship of crime rate with other variables by inspecting
scatterplots. As observed in Chapter 1, a special group of cases with high crime rate stand
out from the others. All cases in this group share the same value in each of the following 5
variables : x2, x3, x9, x10, x11.

4.3.2 The low crime rate group.

Excluding this high crime rate group, there are 374 cases remaining. We run SIR on these
and now there are only two components significant. The pictures are similar to but sharper
than the ones obtained from the whole sample. We are able to identify x6 as the primary
contributor of the first component. For the second component, x1 and x13 are the top candi-
dates. We then run SIR again, with x1, x6, x13 as the regressor variables this time ( Figures
(4.3(a)-(d)). The first component b̂′1x is clearly due to x6, which has a correlation higher than
.99 with b̂′1x. The second component, can be described roughly as x1 + 30x13 adjusted by
the first component for orthogonalization. These two SIR variates are nonlinearly correlated;
see Figure 4.4.

Other values of H , ranging from 10 to 30, have provided essentially the same view.
The logarithm transformation used to obtain Y is borrowed from Harrison and Rubinfeld
(1978). This is not necessary because SIR is invariant under the monotone transformation of
Y . SIR would still find the same projections if the original scale were used. In Figure 4.5 the
original scale of house price is used. This can be compared with Figures 4.3. It appears that
the logarithm transformation is unnecessary.

4.3.3 Intrepretation.

In this study, SIR identifies two key factors of different nature and provides a graphical sum-
mary. The variable x6, average number of rooms, is a physical factor, which may reflect the
construction cost and the practical utility of a house to some degree. It affects the physi-
cal condition of a house. The other variable x1 + 30x13, the crime rate and percentage of
the poor, is a socio-economic factor. It reflects the desirability of the house’s neighborhood
which in turn affects the area’s land value. SIR reveals the nonlinear association between
these two factors. The importance of the physical factor is also confirmed by other meth-
ods; for example, the straightforward linear regression, the more complicated model fitting of
Harrison and Rubinfeld, and ACE of Breiman and Friedman. In fact, in each of these studies,
the physical variable is always the leading factor which accounts for the highest percentage
of variation in the prediction equation. Because of this consistency from different studies,
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4.3 Boston housing data. 35
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Figure 4.3: SIR’s view on the subsample that excludes a high crime rate group with only x1,
x6, x13 as the regressor variables. Y is the logrithm of the median value of owner-occupied
house.

one might naively be forced to conclude that x6 is the dominant factor. To challenge this
simple-minded statement, we should resort to the helix type of nonlinear confounding pat-
tern exhibited by the three-dimensional SIR plot. The second factor which appears equally
important from the SIR plots, cannot be found from the other studies because their models
have precluded structure like the one we found here a priori.

It is usually hard to draw any decisive conclusion from a single study. If the same helix
shape of distribution also exists in data from other cities, for example, then the finding would
be much more noteworthy. The graphics found here, however, is not available from linear
regression or other methods. The exposure of the helix type data cloud offers an alarming di-
agnosis for methods aiming at the approximation the regression surface, which are sensitive
to nonlinear confounding. We shall turn to this point again in Chapter 10.

Finally, we have run SIR with x1, x6, x13 and x5 as the regressors. It turns out that the
two components found are essentially the same as those without x5, and that the correlation
coefficient for the corresponding components is higher than .99 for each of the two directions
found by SIR. This suggests that x5, nitrogen oxide concentration, does not show a significant
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SIR1

SIR2

Y

Figure 4.4: The scatterplot of the first two components in Figures 4.3 (a)-(d)

(a) (b)
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Figure 4.5: SIR’s view on the subsample that excludes a high crime rate group with only x1,
x6, x13 as the regressor variables. Y is the original scale median value of owner-occupied
house.

role in affecting the relative housing prices in the low crime rate areas.

4.4 Structure removal.

Quite often, finer structure in the data can only be detected after the main structure is re-
moved.

Example 4.4.1 Ozone data. We take a data set from Breiman and Friedman (1985), the
data for studying the atmospheric ozone concentration in the Los Angeles basin. We use the
daily measurement of ozone concentration in Upland as the output variable y and want to
find its relationship with eight meteorological variables (see Table 8.4). There are n = 330
observations in the study. First, we apply SIR to the data and find one significant component.
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This component is almost identical to the b̂′ls x, the component found by the linear least
squares fitting. For certain slice sizes, we can find a marginally significant second component
as well, but we decide to ignore that. We then use a forward selection method to find out
the important variables contributing to the first component. Three variables x1, x2, x6 are
found that explain more than 99% of the total variation of the first component. We run SIR
again using only x1, x2, x6 as the input variables. The scatterplot of y against b̂′sx, the first
component found. We use 30 slices here for SIR, but other choices yield almost identical
scenes. The correlation between b̂′ls x and b̂′sx is above .99 as well.

A quadratic trend is visible from the SIR plot. After fitting a quadratic polynomial :

y = c0 + c1u1 + c2u2
1 + ε,

where u1 denotes the variable b̂′sx.
We finally apply SIR again to the residual and found one significant component, which

gives the view Figure 4.6. An interesting triangle pattern of heterogeneity is seen.

Figure 4.6: Ozone data. Residuals against the direction found by SIR

4.5 OTL push-pull circuit.

Most regression analysis techniques deal with data which are empirically collected. But
there are many other cases in which the relationship between the input and output variables
can be derived from physical/mathematical laws. The response is deterministic and is indeed
already given. There are no data to analyze.

Figure 4.* depicts an OTL push-pull circuit used by a TV manufacturing company in
Hanzou City of China( Chen et. al. 1985).


