Two supplements:
(1) Population version of ANOVA.

For completeness, we derive the ANOVA identity here for population version:

$$
\operatorname{cov}(\mathbf{x})=\operatorname{cov}(E(\mathbf{x} \mid Y))+E(\operatorname{cov}(\mathbf{x} \mid Y))
$$

Here \mathbf{x} is a p -dimensional random vector and Y is a random variable (or vector). First write

$$
\mathbf{x}=E(\mathbf{x} \mid Y)+(\mathbf{x}-E(\mathbf{x} \mid Y))
$$

Because $E[\mathbf{x}-E(\mathbf{x} \mid Y)]=0$, it follows that $\operatorname{cov}(E(\mathbf{x} \mid Y), \mathbf{x}-E(\mathbf{x} \mid Y))=E[E(\mathbf{x} \mid Y)(\mathbf{x}-$ $\left.E(\mathbf{x} \mid Y))^{\prime}\right]=E\left(E\left[E(\mathbf{x} \mid Y)\left(\mathbf{x}-E(\mathbf{x} \mid Y)^{\prime}\right) \mid Y\right]\right)=E(E(\mathbf{x} \mid Y)[E((\mathbf{x}-E(\mathbf{x} \mid Y)) \mid Y)])=E[(E(\mathbf{x} \mid Y) 0]=\square$
0.

Thus we have $\operatorname{cov}(\mathbf{x})=\operatorname{cov}(E(\mathbf{x} \mid Y))+\operatorname{cov}(\mathbf{x}-E(x \mid Y))$ Now

$$
\begin{aligned}
& \left.\operatorname{cov}(\mathbf{x}-E(\mathbf{x} \mid Y))=E(\mathbf{x}-E(\mathbf{x} \mid Y))(\mathbf{x}-E(\mathbf{x} \mid Y))^{\prime}\right) \\
= & E\left(E\left[(\mathbf{x}-E(\mathbf{x} \mid Y))(\mathbf{x}-E(\mathbf{x} \mid Y))^{\prime} \mid Y\right]\right)=E(\operatorname{cov}(\mathbf{x} \mid Y))
\end{aligned}
$$

We have derived the ANOVA identity.
(2) Finding $E\left(\mathbf{x} \mid \beta^{\prime} \mathbf{x}\right)$, under $\mathbf{x}=0$ and the conditional linearity assumption that for any vector b, there exists a constant c such that

$$
E\left(b^{\prime} \mathbf{x} \mid \beta^{\prime} \mathbf{x}\right)=c \beta^{\prime} \mathbf{x}
$$

(note c may depend on b).
First suppose $\operatorname{cov}(\mathbf{x})=I$. Then for any vector $b, \operatorname{cov}\left(b^{\prime} \mathbf{x}, \beta^{\prime} \mathbf{x}\right)=b^{\prime} \operatorname{cov}(\mathbf{x}) \beta=b^{\prime} \beta$.
Now, for any two random variables with mean zero, say V, W, it is clear that $\operatorname{cov}(W, V)=\square$ $E(V W)=E(E(V W \mid V))=E(V E(W \mid V))$. Taking $V=\beta^{\prime} \mathbf{x}$ and $W=b^{\prime} \mathbf{x}$, we see that $\operatorname{cov}\left(b^{\prime} \mathbf{x}, \beta^{\prime} \mathbf{x}\right)=E\left(\beta^{\prime} \mathbf{x} E\left(b^{\prime} \mathbf{x} \mid \beta^{\prime} \mathbf{x}\right)\right)$, which, due to the linearity condition, equals to $E\left(\beta^{\prime} \mathbf{x} c \beta^{\prime} \mathbf{x}\right)=\operatorname{cvar}\left(\beta^{\prime} \mathbf{x}\right)=c \beta^{\prime} \beta$

Therefore, we have shown that $c=b^{\prime} \beta\left(\beta^{\prime} \beta\right)^{-1}$ Since this is true for any b, it must hold that $E\left(\mathbf{x} \mid \beta^{\prime} \mathbf{x}\right)=\beta\left(\beta^{\prime} \beta\right)^{-1} \beta^{\prime} \mathbf{x}$ We have seen that $E\left(\mathbf{x} \mid \beta^{\prime} \mathbf{x}\right)$ must be proportional to β.

For the general covariance matrix of \mathbf{x}, we can obtain $b^{\prime} \Sigma_{\mathbf{x}} \beta=c \beta^{\prime} \Sigma_{\mathbf{x}} \beta$. Thus $E(\mathbf{x} \mid Y)=\Sigma_{\mathbf{x}} \beta\left(\beta^{\prime} \Sigma_{\mathbf{x}} \beta\right)^{-1} \beta^{\prime} \mathbf{x}$, which is proportional to $\Sigma_{\mathbf{x}} \beta$.

