
Appendix

Methods using local smoothing : Additive models, ACE, projection pursuit regression,

MARS

1. One dimensional nonparametric regression model :

Y = g(x) + �

Methods : kernel smoothing, least squares by splines, wavelets, etc. LOWESS

Statistical ideas : balance between bias and variance ; cross-validation; model selection

In terms of transformation : g(x) = E(Y jx) is the optimal transformation t(�)
such that

mint(�)E(y � t(x))2

where the minimization is over any transformation of x. Equivalently, the squared corre-

lation coe�cient (called R-squared) between Y and the transformed x is maximized

2. Additive model : (Hastie and Tibshirani, 1986, Statisical Science, 297-

318

Y = g1(x1) + g2(x2) + � � �+ gp(xp) + �

Methods : same as 1, with iterations. Thus beginning with x1, a best smoother

ĝ1(x1) is obtained by regressing Y against x1 nonparametrically. Then take the residual as

Y and regress against x2. Again �nd the residual and apply the same smoothing procedure

to x3 and continue till xp is �tted. After that, update ĝ1 by regressing Y �
Pp

i=2 gi(xi)

against x1. Continue the updating for each function many times till some criterion of

convergence is satis�ed.

In terms of transformation: �nd transformation for each coordinate so that the

squared multiple correlation coe�cient (called R-squared) between Y and the transformed

regressors is maximized.

3. ACE (alternating conditional expectation) , also referred to as alternat-

ing least squares(Breiman and Friedman 1985, JASA, 580-597):

f(Y ) = g1(x1) + g2(x2) + � � � + gp(xp) + �

Methods : (1) p = 1. First regress Y against x as in (1) to obtain a smooth ĝ(x). Then

reverse the role and regress ĝ(x) against Y to get a smooth f̂(Y ). Multiply a constant to

f̂ (Y ) so that the variance of f̂ (x) is normalized to one. Regress f̂ (Y ) against x to update

ĝ(x) and then use that to update f̂ (Y ) again. Iterate till some convergence criterion is

reached.

(2) p > 1. Combine the steps used in (1) and the steps used in additive modeling.

In terms of transformation: �nd transformations for both regressors and response

variable so that the multiple correlation is maximized.

Comparison with SIR :

For Boston Housing data, ACE, after variable selection yields an additive equation

involving four regressors.
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\The two terms that enters most strongly involve the number of rooms squared and

the logrithm of the fraction of the population that is of lower status. : : : The remaining

two variables that enter into this model are pupil-teacher ratio and property tax rate. : : :

\

\

In contrast, SIR identi�es three variables : crime rate, number of room, and the

fraction of the population in lower status. The crime rate and the fraction of the poor is

further combined into one sigle variable, yielding a two component model, one being the

house size indicator and the other being a social environment indicator. These two factors

interact in a nonlinear way, exhibiting a helical-looking data pattern.

Important variables found by both SIR and ACE : room size and percentange of the

poor . Yet, ACE assumes that the e�ects from these two variables are additive (or at least

approximately so). This assumption is NOT implied by SIR.

Crime rate is not identi�ed as a key variable by ACE. SIR found this factor to be

doubly important : (1) as a strati�cation variable in identifying a lower-crime rate cluster

(2) as one of the three key variable in the �nal model.

Projection pursuit regression (Friedman and Stuetzle 1981), JASA 817-823

:

Y = g1(�
0

1x) + g2(�
0

2x) + � � �+ gk(�
0

kx) + �

Methods : nonlinear least squares + smoothing.

(1) k = 1. Start with regressing Y on x linearly to get �̂. Treat �̂ as x and apply

the one-dimensional regression method to estimate g1. Then treating the estimated g1 as

being �xed, use nonlinear least squares to update �̂. Iterate several times.

(2)k > 1. This requires a sweeping through each regressor iteratively in a way similar

to how additive modeling generalizes the one-dimensional nonparametric regression.

Remark 1: a global searching method for �i was proposed in the original article of

Friedman and Stueztle.

Remark 2 : There is an interesting connection with a robustness property of mul-

tiple linear regression due originally to Brillinger(1977, Biometrika, 509-515; 1983 in \A

Festschrift for Erick L.Lehmann", Belmont, CA: Wadsworth 97-114) and later extended

by Li and Duan(1989, Ann. Stat. 1009-1052).
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Chapter 6

Transformation and SIR

In this chapter, we shall draw connections between SIR and multiple linear regression. This
is based on Chen and Li(1998).

6.1 Dependent variable transformation.

In this section, we shall derive SIR from the viewpoint of tranformation on the dependent
variable Y . This derivation is descriptive in nature.

Transformation has become one of the routine steps in regression analysis. For experi-
enced data analysts, an inspection on the scatterdiagrams, or on plots of the residuals may
often lead to some suitable transformations. For high dimensional data, however, we have
many scatterdiagrams to inspect. Moreover, in many cases, a common transformation for
simplifying the analysis may not be possible. A transformation suitable for one plot may not
be good for another.

Contrary to these subjective eyeballs-based transformation methods, Box and Cox(1964)
formulated the problem rigorously as the estimation of the power parameter λ in the power
transformation family:

T (Y, λ) = α + β ′x+ ε
T (Y, λ) = (Y λ − 1)/λ, 0 ≤ λ ≤ ∞. (1.1)

One hope is that this family may be flexible enough to incorporate many reasonable trans-
formations suggested by human eyes and to achieve the multiple purpose of linearizing the
regression , stabilizing the variance, and achieving the normality.

While the Box-Cox transformation model is a good approximation of many data sets, it is
clearly deficient for the application of 3-D graphing. Indeed, if the Box-Cox transformation
model is correct, then there is no pressing need to project x on more than one directions.
Finding a good estimate of β and project x on the estimated β direction seems informative
enough.

In this chapter, transformation will be used in a way different from its traditional role of
being a mechanism for improving the goodness of model fitting. It will serve as an interme-
diate tool for finding interesting projections of x. We shall consider a direction b interesting
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48 Transformation and SIR

for viewing if the resulting scatterplot of Y against the projected variable b′x, may suggest a
transformation on Y to obtain a good linear fit. A commonly used measure of goodness of
fit, the R-squared, is adopted here. For any direction b, let the associated ”optimal” transfor-
mation be Tb(Y ), i.e, Tb(Y ) achieves

R2
b = max corr (T (Y ), b′x)2 (1.2)

where the maximum is taken over all transformations h, and corr stands for the correlation
coefficient.

Now we propose R2
b as the index in searching for the optimal projections. This index

reasonably reflects the degree of interestingness hidden in the scatterdiagram. Of course,
this does not mean that one has to find the optimal transformation by inspecting the scatter-
diagram with eyes. Neither did we claim that all interesting aspects about the scatterdiagram
can be fully captured by this single index; otherwise we may need only the index but not the
graph. Yet it is believable that a high value of the maximum R-squared may allow a lot of
interesting features to occur, including blurring curves, heteroscedasticity, and clusters.
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(a) (b)

(c) (d)

Figure 6.1: Transformation Helps Linearize the Regression for (a), (b), (c), but not (d)

Figures 6.1(a)-(d) show some typical situations. Transformation on Y can help increase
the R-squared value substantially in Figure 6.1(a)-(c) ( in (b) and (c), take the absolute value,
for example). It does not help in Figure 6.1(d), however.

What transformation will optimize the R-squared value ? The answer is
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6.1 Dependent variable transformation. 49

Tb(y) = E(b′x|Y = y). To see this, first assume that Ex = 0 for simplicity. Then

corr(T (Y ), b′x)2 = [ET (Y )b′x]2

varT (Y )var(b′x)

= (ET (Y )Tb(Y ))2

varT (Y )var(b′x)

= corr(T (Y ), Tb(Y ))
2 varTb(Y )

var(b′x)
It is now clear that the maximum is achieved when the correlation coeficient in the last

expression is eqal to 1 or -1, showing that our answer is correct.
With our index, the first projection is a direction b1 that maximizes R2

b over all vectors
b. After finding b1, we then look to those directions uncorrelated to b1 for the the second
maximization direction. Then we can plot Y against b′1x and b′2x by, say, the 3-D rotating
plot for visualization.

We may continue the above maximization process to obtain a set of vectors, b1, ..., bp ,
satisfying the conditions

cov(b′i x, b′j x) = 0, f or i �= j

R2
bi
= max

b
R2

b, (1.3)

where the maximum is taken over all vectors b satisfying cov(b′x, b′j x) = 0, for j =
1, ..., (i − 1).

Theorem 1.1 below characterizes the b′i s and establishes the connection with sliced in-
verse regression. Recall the definition of inverse regression curve

η(y) = E(x|Y = y).

and its covariance �η = cov [η(Y )]

Theorem 6.1. The vectors constructed from the maximization problem (1.3), bi , i = 1, .., p,
are the same as the eigenvectors for the eigenvalue decomposition of the covariance matrix
�η with respect to �x; i.e.,

�ηbi = λi�xbi , i = 1, ..., p,

λ1 ≥ λ2 ≥ ... ≥ λp

Proof. Without loss of generality, we assume that Ex=0. First, it can be verified that for any
direction b, the “optimal” transformation is Tb(y) = E(b′x|Y = y) = b′η(y). Then a simple
conditional expectation argument leads to

cov(Tb(Y ), b′x) = E[Tb(Y )(b
′x)]

= E[Tb(Y )E(b
′x|Y )]

= b′E(η(Y )η(Y )′)b
= b′�ηb. (1.4)
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50 Transformation and SIR

It follows that

R2
b =

b′�ηb
b′�xb

(1.5)

Therefore the eigenvalue decomposition of �η with respect to �x solves the maximization
problem (1.3), completing the proof. �

The spectrum decomposition problem stated in this theorem is exactly the same as the
one proposed in sliced inverse regression.

An equivalent way of defining interesting directions for projections can be phrased in the
following. For a transformation T (Y ) of the dependent variable Y , consider the linear least
squares fit by x; namely,

min
a∈R,b∈R p

E(T (Y )− a − b′x)2 (1.6)

Denote the minimizer by a(T ), b(T ). Consider again the R-squared:

V ar (a(T )− b(T )′x)
V ar T (Y )

= [corr(T (Y ), b(T )′x)]2 (1.7)

Let T1 be any “optimal” transformation that maximizes (1.7). Subject to being orthogonal to
T1 in the sense that cov(T (Y ), T1(Y )) = 0, we again maximize (1.7) to find T2(Y ). Continue
in the similar fashion until we find p optimal orthogonal transformations T1, ...., Tp . The
following theorem shows that the regression slope vectors, b(Ti), i = 1, · · · , p, are the
solutions, bi , i = 1, ..., p, for the maximization problem (1.3).

Theorem 6.2. The regression slope vectors , b(Ti), i = 1, ..., p, for the optimal transfor-
mations Ti , i = 1, ..., p are the solutions bi , i = 1, ..., p for (1.3). On the other hand,
Ti(y) = E(b′i x|Y = y), i = 1, ..., p, maximize (1.7).

Proof. Our strategy is to show that the two maximization problems, (1.3) and the maximiza-
tion of (1.7), can be translated into a common double maximization problem of the form
(1.9) below.

First observe that the least squares solution to (1.3) is also a solution to the maximization
problem:

max
b

corr(T (Y ), b′x)2 (1.8)

Thus T1(·) solves
max
T (·)

max
b

corr(T (Y ), b′x)2 (1.9)

Reversing the ordering of the two “max”, this is the same problem that b1 solves. It fol-
lows that bT1 is proportional to b1 and E(b′1x|Y ) = b′1η(Y ) can be taken as the optimal
transformation T1(Y ).

Next, for any direction b uncorrelated to b1, i.e, 0 = cov(b′x, b′1x), we also have

(cov(Tb(Y ), T1(Y )) = cov(E(b′x|Y ), E(b′1x|Y )) = b′cov(η(Y ))b1 = λ1b′�xb1 = 0,

where the next to the last identity is due to the definition of eigenvector. This implies that
to find b2 , the double maximization problem (1.9) can be restricted to those b that are
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6.2 Some Remarks. 51

uncorrelated with b1 as well as to those T (·) that are orthogonal to T1(·) . On the other
hand, we shall show that the same restriction applies when finding T2(·). To do this, it is
enough to check that for any T (y) that is orthogonal to T1(y) , we have b′1�xxbh = 0.
Since the regression coefficient bh is equal to �−1

x cov(T (Y ), x), it suffices to verify that
cov(T (Y ), b′1x) = 0. But by the same conditional expectation argument used in (1.4), we
see that cov(T (Y ), b′1x) = cov(T (Y ), E(b′1x|y)) = cov(T (Y ), h1(Y )) = 0, proving the
claim.

It follows that b(T2) is proportional to b2, and that E(b2x|Y ) can be taken as T2(Y ). For
p larger than 2, We can repeat the same argument to complete the proof.

These theorems offer an interpretation for the eigenvalues in the output of SIR:
the i th eigenvalue of SIR is equal to the R-squared value of the linear regression when Y

is transformed to Ti(Y ).

6.2 Some Remarks.

Remark 2.1. As mentioned before, in the search of an “optimal” transformation we do not
restrict to the monotone ones. Monotone transformations are reasonable only if we believe
in the adequacy of transformation models. While there may be many good reasons to require
monotonicity for the first transformation (see Ramsay 1988), they are less compelling for
the second transformation. Indeed, Theorem 1.2 implies that the second one can not be
monotone if the first one is so.
Remark 2.2. No single index can reflect all interesting aspects in a scatterdiagram; otherwise
we may need only the index, not graphics. Our transformation-based index R2(b) is no
exception. It performs poorly when the scatterdiagram of Y against b′x contains a pattern
of symmetry about some vertical line. The correlation coefficient is zero and we cannot
increase it by transforming Y . Thus R2(b) is always zero no matter how interesting the
pattern of symmetry is. This offers an explanation for why SIR cannot recover the e.d.r.
direction in a simple quadratic function Y = (β ′x)2; see Cook and Weisberg (1991) and the
Rejoinder of Li(1992) for more discussion. One remedy is to consider double transformation
(Carroll and Ruper 1988); namely to allow the transformation on b′x as well. We may use
the maximum correlation between y and b′x to quantify interestingness in the scatterplot :

max
T,g

ρ(T (y), g(b′x))

where T, g are any square integrable functions. How to maximize this index over all possible
directions efficiently is still to be explored.

Nonlinear multivariate analysis techniques such as correspondence analysis, optimal
scaling, and others ( Gifi1991), and ACE (Breiman and Friedman 1985, Koyak 1987) use
maximum correlation in statistics in a rather different manner. For example, ACE proposes
the model

T (Y ) =
p∑

i=1

gi(xi)+ ε
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52 Transformation and SIR

where x = (x1, · · · , xp)
′, and gi ’s. Only one transformation on Y is allowed for the purpose

of rescaling. Each regressor is allowed to make transformation, a feature that SIR does not
have. However, the additivity assumption can be too strong; a remedy to this is given by
MARS (Freedman 1991), but without allowing the transformation on Y . These tools aim at
finding a good approximation of the regression function E(Y |x) without graphical guidance.

Remark 2.3. Although transformation has been used frequently in Statistics, there is one
major difference between ours and others. We use transformations of y to suggest interesting
patterns in the data only; while others use transformations for functional approximation.
Consequently, our transformations are disposable. After finding the directions, we are no
longer obligated to these transformations for modeling. The subsequent analysis should be
based on what is seen.

Remark 2.4. The duality relationship displayed in Theorem 1.2 can be put into a more gen-
eral context in terms of Hilbert spaces. To simplify the notations, assume that Ex is 0. Con-
sider an infinite dimensional Hilbert space, H1, consisted of all squared integrable random
variables T (Y ) that are transformed from Y and have mean 0. LetH2 be the p−dimensional
Hilbert space, consisted of the linear combinations of x, b′x. These two Hilbert spaces gen-
erate a larger Hilbert space, denoted by H . Measure the distance between two elements,
v1, v2, in H , by the standard deviation of v1 − v2. Then for any projected variable b′x,
the closest element in H1 is E(b′x|Y ) − EY , which is a version of Tb(y). Likewise, for
any transformation T (Y ) the closest element in H2 is the best linear fit, b(T )′x. Consider
the p dimensional Hilbert subspace, H3, of H1, generated by Tb(Y ), b ∈ R p. The dual-
ity relationship in Theorem 2.2 simply says that one can find orthogonal basis vectors, say
ei , i = 1, ..., p, in H2 and orthogonal basis vectors, say, vi , i = 1, ..., p, in H3 such that
the closest element in H1 to ei is a multiple of vi , and conversely the closest element in
H2 to vi is a multiple of ei . This is the canonical analysis between H1 and H2, a special
form of singular value decomposition problems prevalent in nonlinear multivariate analysis.
In principal, it is possible to enlarge H2 by including a few second order terms (or B-spline
terms ) of x.

6.3 Examples.

In this section, we shall explain why SIR works in a variety of situations from the transfor-
mation based viewpoint.

6.3.1 Curves and clusters.

Consider the model

Y = sign(β ′1x+ σ1ε1)log(|β ′2x+ α + σ2ε2|), (3.1)

where the function sign(·) takes value 1 or -1 depending on the sign of the argument. All
coordinates of x and ε1, ε2 are independent standard normal random variables. For a clear
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illustration, we first study the noise-free case, σ1 = σ2 = 0. Take the dimension of x to be
p = 15 and generate n = 300 cases with

β ′1 = (1 1 1 1 1 1 1 1 1 0 0 0 0 0 0), β′2 = (0 0 0 0 0 0 0 0 0 1 1 1 1 1 1), α = 5.

We run SIR with the number of slices equal to 20. Other numbers, 10 and 30, also show
similar results. A rotation plot for Y against the first two projections is shown in Figures
6.2(a)-(d). The first eigenvector (Fig. 6.2(a)) finds two curves spreading out symmetrically
about the horizontal axis and the second one (Figure 6.2(c)) shows a pattern of two clusters.
Table 6.1 gives the first two output eigenvectors and eigenvalues. They are approximately
proportional to β2 and β1 as desired.

Table 6.1: The first two eigenvectors(with standard deviations and ratios and eigenvalues of
SIR for (3.1) without error terms.

first vector (-.05, -.03, -.01, -.03, -.01, -.03, .01, -.03, -.01, .39, .41, .44, .45, .42, .43)
S.D. (.02, .02, .02, .02, .02, .02, .02, .03, .02, .02, .02, .02, .03, .02, .02)
ratio (-2.1, -1.5, -0.5, -1.4, -0.3, -1.6, 0.3, -1.4, -0.3, 18, 18, 19, 18, 20, 18)

second vector (.35, .39, .35, .24, .28, .30, .32, .27, .33, -.00, -.01, .03, -.02, .04, .11)
S.D. (.05, .05, .04, .05, .05, .05, .05, .05, .05, .05, .04, .05, .05, .05, .05)
ratio (7.2, 7.7, 8.0, 4.8, 5.7, 6.5, 6.7, 5.1, 6.6, -0.0, -0.3, 0.6, -0.3, 0.8, 2.2)

eigenvalues (0.88, .61, .16, .13, .12, .08, .07, .05, .04, .02, .02, .01, .01, .00, .00)

Figure 6.2(a) shows approximately the scatterplot of Y against β ′2x. The symmetry about
the horizontal axis is due to the sign function which acts on β ′1x behind the screen. This
symmetry yields a zero correlation coefficient between Y and β ′2x. But it can be increased
greatly by folding the picture over along the x−axis, which amounts to taking the absolute
value transformation |Y |. This explains why SIR is capable of finding this direction. Accord-
ing to Theorem 6.2, the optimal transformation is T1(Y ) = E(β ′2x|Y ), which should give an
even higher correlation coefficient, about√.84 ≈ .92 as estimated by the squared root of the
first eigenvalue of SIR, than the absolute value transformation.

Figure 6.2(c) shows approximately the scatterplot of Y against β ′1x. This is the direction
to be found by a linear least squares of Y against x, because Y is uncorrelated with any
directions orthogonal to β ′1x.

Figures 6.2(b) and 6.2(d) show two views of the rotation plot found by SIR. These static
views themselves do not offer much additional information. But when we rotate the plot
around the vertical axis on the screen, the two curves in 6.2(a) are then turned into two thin
plates, floating in and out.

We also repeat the simulation with the noise level set at σ1 = σ2 = 1. The output of
SIR is also quite close to the directions of β2, β1; see Table 6.2 and Figures 6.3(a)-(b). The
curves are now blurred.
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(a)

(c)

(b)
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Figure 6.2: SIR’s view of Data Generated From (3.1).

Remark 3.1. We also simulated the case with α = 0. SIR fails in this case because of the
symmetry on the β2 direction. Second-moment based methods (Cook and Weisberg 1991,
the Rejoinder of Li 1991) and variants of principal Hessian direction (Li 1992b) are capable
of finding the β2 direction.

6.3.2 Heteroscedasticity.

A popular model for studying heteroscedasticity is

y = β ′1x+ εg(α + β ′2x), (3.2)

where g is often conveniently taken to be a power transformation function (c.f. (2.1)); see,
e.g., Carroll, Wu, and Ruppert (1988).

To see how SIR helps the residual analysis, we take g(x) = .2x and generate 100 cases
for p = 6 with

β ′1 = (1, 1, 1, 1, 0, 0), β ′2 = (0, 0, 0, 0, 1, 1), α = 3, ε ∼ N(0, 1)
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Table 6.2: The first two eigenvectors(with standard deviations and ratios) and eigenvalues of
SIR for (3.1) with error terms.

first vector (-.01, .06, .01, -.01, .02, .01, -.01, -.05, -.01, -.46, -.46, -.44, -.43, -.39, -.38)
S.D. (.03, .03, .03, .03, .03, .03, .03, .04, .03, .03, .03, .03, .04, .03, .03)
ratio (-0.4, 1.9, 0.4, -0.4, 0.5, 0.4, -0.4, -1.5, -0.3, -14, -14, -13, -12, -13, -11)

second vector (.33, .31, .34, .27, .33, .32, .39, .22, .34, -.02, -.17, .09, .06, -.05, .14)
S.D. (.05, .06, .05, .06, .05, .05, .05, .06, .06, .05, .05, .06, .06, .05, .06)
ratio (6.1, 5.5, 7.0, 4.7, 6.0, 6.1, 7.2, 3.7, 6.1 -0.3, -3.1, 1.5, 1.0, -0.9, 2.5)

eigenvalues (.78, .55, .17, .12, .11, .10, .07, .05, .04, .03, .02, .01, .01, .01, .00)

Y

SIR1 SIR2

(a) (b)

Y

SIR2SIR1

Figure 6.3: SIR’s view of Data Generated From (3.1) with σ1 = σ2 = 1, p = 15

Fit the data by the usual linear least squares and find the residual r . Since β ′1x is uncor-
related with β ′2x, the heteroscedasticity occurs along a direction orthogonal to the direction
of the best linear fit. Thus we do not anticipate to find any pattern by examining the usual
residual plot, the plot of Y against predicted values (see Figure 6.4 (a) ).

Now we run SIR on r ; see Table 6.3. Figure 6.4(b) gives the plot of r against the first
direction found by SIR. It does reveal the heteroscedasticity pattern well.

The reason why SIR can help in residual analysis is easy to understand. Although r is,
by definition, uncorrelated with x, we can apply transformation on r to increase the corre-
lation and SIR does that in an “optimal” way. There is no need to take the absolute value
transformation on r before applying SIR. The flexibility in allowing for non-monotone trans-
formation is the key to the success.
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Figure 6.4: Residuals against Linear Squares Fit(a) and Direction(b) of Model(3.2).

Table 6.3: The first eigenvector(with standard deviations and ratios) and eigenvalues of SIR
for residuals of (3.2).

first eigenvector (-.05, -.04, .18, .06, -.71, -.79)
S.D. (.13, .17, .13, .14, .13, .14)
ratio (-0.4, -0.2, 1.4, 0.5, -5.4, -5.5)

eigenvalues (.37, .23, .13, .07, .03, .01)

6.3.3 Horseshoe and helix.

A five-dimensional input variable x = (x1, ..., x5)
′ is obtained by first generating 1000 cases

for x from the standard normal distribution and then retaining only those cases that satisfy
the constraint :

x2
1 − 0.5 < x2 < x2

1 + 0.5 (3.3)

This reduces the sample size to 296. Now a linear model is used to generate Y

Y = x1 + 0.5ε, ε ∼ N(0, 1) (3.4)

The output of SIR shows two large eigenvalues; see Table 6.4. Figures 6.5(a)-(d) are some
static pictures of the rotational plot found by SIR. By rotating the plot about the vertical axis,
we find data points spinning like a helix or a slide.

The first direction shows a linear pattern (Figure 6.5(a)) and the second direction finds a
curve (Figure 6.5(c)). They correspond to x1 and x2 approximately. The scatterdiagram of
these two SIR directions, Figure 6.5 (d), shows a horseshoe pattern, exhibiting the quadratic
constraint (3.3). In this example, x2 is nonlinearly correlated with x1, a situation where
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(a)

(c)
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Y

SIR2SIR1 SIR1

SIR2

Y

SIR1

Y

SIR2

Figure 6.5: SIR’s View of Data Generated From (3.3)-(3.4).

Condition (1.3) is severely violated. SIR picks up this additional direction because Y can be
transformed to retain a significant correlation with x2.

A data set with a pattern like the one just observed here creates some difficulties in
modeling which have not received proper attention in the literature. First of all, we may not
be able to tell if the number of the components is one or two. For example, a data generated
by a two-components model of the form

Y = sign(x1)
√
|x2| + .5ε

presents little visual difference from the one we just find. In addition, even if a one-component
model is assumed, we may not have much information to estimate the correct direction well
without knowing the correct functional form.

Perhaps exhibiting this low dimensional nonlinear confounding patterns is scientifically
more important than attempting to resolving this issue statistically. Graphics gives scientists
something to focus on. It helps stimulate relevant knowledge.
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Table 6.4: The first two eigenvectors(with standard deviations and ratios) and eigenvalues of
SIR for (3.3), (3.4).

first eigenvector (-1.64, .10, .02, -.03, .01)
S.D. (.07, .09, 0.04, 0.04, .04)
ratio (-23, 1.1, 0.5, -0.6, 0.3)

second eigenvector (.16, 2.1, .06, -.01, -.02)
S.D. (.15, .19, .09, 0.09, 0.09)
ratio (1.0 11 0.6 -0.1 -0.2)

eigenvalues (.66, .30, .056, .023, .01)

6.4 Simple estimates for the standard deviations of the SIR
directions.

Outputs from multiple linear regression(MLR) software often attach an estimated standard
deviation (i.e. standard error) to each regression coefficient. With that, users can easily form
the t-ratio (= the ratio of the coefficient estimate to the standard error) for a quick assessment
on the (statistical) significance of each regressor variable. It would be desirable if SIR outputs
can provide similar information. But the asymptotics for SIR is more difficult than MLR. The
formulae for the covariance matrix of each eigenvector v̂i can be derived by combining some
perturbation results for eigenvalue decomposition with large sample probabilistic argument.
For general cases, they appear complex and hard to interpret. However, the transformation
theory in Section 1 offers a clue for simplification in practical use.

As it turns out, our formula is similar to the familiar one in MLR. For the i th SIR direc-
tion v̂i , we may attach it with the vector of the squared root of the diagonal elements from
the matrix

(1− λ̂i)

λ̂i

· n−1�−1
x

as the estimated standard deviations. This formula brings out three messages useful to bear
in mind:

(m.1) The standard errors of a SIR direction are proportional to those for the standard
MLR of Y on x.

(m.2) The inaccuracy of a SIR direction gets greater when the corresponding eigenvalue
gets smaller.

(m.3) The ratio (1−λ̂i )

λ̂i
plays the role of the average of squared residuals in MLR.

To see how the transformation theory is used for suggesting our formula, first recall from
the familiar least squares theory:

cov(β̂ls) = σ 2 · n−1�−1
x , (4.1)

This formula remains popular for practical use even if MLR is conducted after a transfor-
mation of Y , albeit the controversy regarding whether the effect of transformation can be
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ignored or not; Bickel and Doksum(1981), Box and Cox(1964), Hinkley and Runger (1984).
Since we can interpret the SIR directions as being proportional to the MLR slope estimate
after optimal transformation (Theorem 3.2), (m.1) is well-anticipated. It remains to explain
(m.3). Suppose the optimal transformation Ti(Y ) were given and we conduct the standard
MLR for the transformed Y values. Let b̃(Ti) be the estimate of the slope vector b(Ti).
Recall (3.6) : SIR eigenvector vi can be obtained from b(Ti) after dividing by the constant
λi . This suggests that the covariance matrix of the SIR estimate v̂i should be equal to the
covariance matrix of b̃(Ti) divided by λ2

i . Now apply (4.1) to find out cov(b̃(Ti)). Since the
R-squared value of the regression is λi as stated in Theorem 3.2, the residual variance σ 2 in
(4.1) must be equal to (1 − λi)var(Ti(y)) = (1 − λi)λi . Finally dividing σ 2 by λ2

i , we are

led to the ratio (1−λ̂i )

λ̂i
given in (m.3).

Like the t-ratios in MLR, the ratios of the SIR estimates over the respective standard
errors provide a convenient way to tell if the corresponding coefficients are statistically sig-
nificant or not. In Appendix B, rigorous asymptotics will be developed for justifying such
applications. More specifically, for the l−th regressor variable, we may test the null hypoth-
esis Ho :

Ho : e′lβi = 0, i = 1, · · · , k (4.2)

where el = (0, · · · , 0, 1, · · · , 0)′ denotes the lth basis vector. The standard error we obtained
is asymptotically valid under the null hypothesis (4.2).

As a cautionary note, our formula are not valid for constructing confidence intervals. In
general, the standard deviations of SIR estimates depend on the true parameters in a rather
complex manner. This complexity is largely due to the additional uncertainty caused by
approximating the vi with v̂i in estimating the transformation Ti(Y ); a phenomenon similar
to the problem of Bickel and Doksum(1981). Thus it remains unclear how close to the correct
ones our simplified standard deviations are.

In deriving the asymptotic distribution, we have also asssumed that the number of slices
used in constructing SIR estimate is fixed Although in theory we can use as many as H =
n/2 slices (Hsing and Carroll 1992), practically we find no obvious advantage in using large
H .


