
Chapter 14

Generalizing Fisher’s linear discriminant
analysis via the SIR approach

This chapter is a minor modification of Chen and Li(1998).

Despite of the rich literature in discriminant analysis, this complicated subject remains
much to be explored. In this chapter, we study the theoretical foundation that supports
Fisher’s linear discriminant analysis (LDA) by setting up the classification problem under
the dimension reduction model (1.1) of chapter 1. Through the connection between SIR
and LDA, our theory helps identify sources of strength and weakness in using CRIMCO-
ORDS( Gnanadesikan 1977) as a graphical tool for displaying group separation patterns.
This connection also leads to several ways of generalizing LDA for better exploration and
exploitation of nonlinear data patterns.

14.1 Introduction.

Discriminant analysis aims at the classification of an object into one of K given classes based
on information from a set of p predictor variables. Among the many available methods, the
simplest and most popular approach is linear discriminant analysis (LDA).

A most well-known property for LDA is that LDA is a Bayes rule under a normality
condition about the predictor distribution. More precisely, the condition requires that for the
i th class, i = 1, · · · , K , the p-dimensional predictor variable x = (x1, · · · , xp)

′ follows a
multi-variate normal distribution with mean µi and a common covariance�c. Together with
the prior probability πi , i = 1, ..., K , about the relative occurrence frequency for each class,
this basic normality assumption leads to a Bayes discriminant rule which coincides with the
rule of LDA.

Another way of deriving LDA originates from the consideration about group separation
when there are only two classes, K = 2 (Fisher 1936, 1938). The idea is to find a linear
combination of the predictors , z = a1x1 + · · · , apxp, that exhibits the largest difference
in the group means relative to the within-group variance. The derived variate z is known
as Fisher’s discriminant function, or the first canonical variate. Fisher’s result is further
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generalized by Rao(1952, Sec 9c) to the multiple class problem, K ≥ 2. In general, after
finding the first r canonical variates, the (r + 1)th canonical variate is the next best linear
combination z that can be obtained subject to the constraint that z must be uncorrelated to all
canonical variates obtained earlier. Canonical variates are also referred to as the discriminant
coordinates (CRIMCOORDS ) in Gnanadesikan(1977).

Empirical evidence has shown that scatterplots of the first few CRIMCOORDS can reveal
interesting clustering patterns. Such graphical displays are helpful in studying the degree and
nature of class separation and for detecting possible outliers. However, the nonlinear patterns
often observed in such plots also point to the limitation of the commonly-used normality
assumption in justifying LDA. The data points within each class do not always appear ellip-
tically distributed. Even if they do appear so, they hardly have the same orientation-violating
the equal covariance assumption.

The motivation of our study stems from the concern about the theoretic foundation of
LDA. To what extent, can LDA be applied effectively without the normality assumption?
In what sense, can the reduction from the original p predictors to the first few CRIMCO-
ORDS be deemed ”effective” ? Are there any other linear combinations more useful than
the CRIMCOORDS in providing graphical information about group separation? If so, how
can one find them? In this article, we address these issues by formulating the classification
problems via the dimension reduction approach of Li(1991). A key notion in that article is
the effective dimension reduction (e.d.r.) space for general regression problems.

This chapter is organized in the following way. In Section 2, we review the dimension
reduction approach and bring out the connection of sliced inverse regression(SIR) with LDA.
It turns out that the e.d.r. directions found by SIR are proportional to the vectors a used in the
canonical variates. Via this connection, the theory of SIR is applied to offer a new theoretical
support for using CRIMCOORDS.

Prior information about the occurrence frequency for each class plays a crucial role in
discriminant analysis. It is certainly needed in forming a Bayes rule. But how critical is
it for dimension reduction? This issue is discussed in Section 3. We argue that dimension
reduction can be pursued independent of the specification of a prior distribution.

LDA can be viewed as a two-stage procedure. The first stage is to find the canonical
variates for reducing the predictor dimension from p to K or less; the second stage is to
split the canonical space linearly into K regions for class-membership prediction via the
Mahalanobis distance. While the SIR theory justifies the use of canonical variates at the
first stage, the theory itself does not support the use of linear split rules at the second stage.
Section 4 discusses this issue. Nonparametric classification rules more effective than LDA
can be formed using the first few canonical variates found at the first stage of LDA.

As is known, the first moment based SIR does not always work in finding the entire e.d.r.
space. Knowledge about when SIR will fail helps identify sources of potential weakness in
using CRIMCOORDS. An important special case is when there are only K = 2 classes.
There is only one CRIMCOORD available now, no matter how complex the true dimension
reduction model is. This may not be enough for locating the entire e.d.r. space because
the e.d.r. space can have more than one dimension. In section 5, more general methods
will be considered to help find more e.d.r. directions that cannot be found by SIR. There
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are two types of generalization. The first one follows the thoughts of Principal Hessian
directions (PHD) (Li 1992a). It amounts to the comparison of the second moments of the
predictors between classes. The second type of generalization explores an idea of double-
slicing mentioned. Several simulation examples are provided and an application to a real
data set is given.

Further discussion and some concluding remarks are given in Section 6.

14.2 SIR and Fisher’s canonical variates.

In this section, the relationship between SIR and canonical variates is established first. Then
the assumptions used to guarantee the success of SIR are discussed in the context of classifi-
cation. These assumptions provide more general theoretical support for the use of canonical
variates than the well-known normality assumption underlying LDA.

14.2.1 Connection.

Recall the dimension reduction model (1.1) from Chapter 1. For ease of presentation, let’s
rewrite it here:

Y = g(β ′1x, · · · , β ′dx, ε). (2.1)

Here Y is the response variable, and g is an unknown function with (d + 1) arguments.
Notice that we have changed the notation a little bit : d is used to replace K as the dimension
of the e.d.r. space. This change is because K is reserved for the number of classes.

Recall the population version of SIR from Chapter 2 first. Denote the covariance matrix
of x by �x. The central idea of SIR is to reverse the roles of x and Y . Instead of regressing
Y on x , we may consider the inverse regression curve E(x|Y ) = (E(x1|Y ), · · · , E(x p|Y ))′.
In general, this curve is in the p dimensional space. However, Theorem 3.1 of Li(1991)
shows that under (2.1) and another condition to be discussed later, the inverse regression
curve indeed falls into a d dimensional subspace. This subspace is determined only by the
e.d.r. directions and �x. Denote the covariance matrix of the random vector η = E(x|Y )
by �η = cov(η) = cov(E(x|Y )). We are led to the following eigenvalue decomposition for
finding e.d.r. directions:

�ηbi = λi�xbi

λ1 ≥ · · · ≥ λp, (2.2)

Li’s theorem implies that all but the first K eigenvalues must be zero and that the eigenvectors
associated with nonzero eigenvalues are the e.d.r. directions.

The sample version of SIR is to substitute �η and �x in (2.2) by their estimates from
an i.i.d. sample (Yi , xi), i = 1, · · · , n. The estimate of �x is just the sample covariance
�̂x = n−1∑n

i=1(xi − x̄)(xi − x̄)′. Here x̄ denotes the sample mean. The estimate of �η can
be formed by first partitioning the response variable Y into H intervals, Ih, h = 1, · · · , H .
Within each slice, compute the mean of x, m̂h = n−1

h

∑
Yi∈Ih

xi , where nh is the number of
cases in slice h. These slice means constitute a simple estimate of E(x|Y ) and they can be
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combined to give a weighted covariance matrix, �̂η = n−1∑H
j=1 n j (m̂ j − x̄)(m̂ j − x̄)′, for

estimating �η. The eigenvectors b̂i ’s are the SIR directions and we shall call b̂′i x the SIR
variates.

The examples and discussion in earlier chapters focuse on the case where the response
variable Y is continuous. But the continuity of Y is not required in (2.1). In fact, when
Y is discrete and can take only K distinct values, the slicing step of SIR is automatic for
H = K . This special circumstance fits well into our classification problem. We can regard
each (xi , Yi) as one case in the training set and the response variable Yi is just the class label
for that case. The slice mean m̂ j corresponds to the vector of the predictor’s mean for the
j th group. The matrix �̂η coincides with the between group variance-covariance matrix in
one-way multivariate analysis of variance (MANOVA).

To elucidate how canonical variates are related to the e.d.r. directions found by SIR,
recall that the first canonical variate is derived by maximizing the ratio of the between-group
variance to the within-group variance. In our notation, for a linear combination z = a′x, the
group means are just a′m̂ j , j = 1, · · · , K . The between-group variance, n−1∑ n j (a′m̂ j −
a′x̄)2, can be written as a′�̂ηa. On the other hand, the within-group variance can be written as
n−1∑n

i=1(a
′xi −a′m̂ j (i))

2 = a′�̂ea, where the class membership for the i-th case is denoted
by j (i) and �̂e is the within-group variance-covariance matrix. The first canonical variate is
the linear combination of x formed by the vector a which solves the following maximization
problem:

max
a

a′�̂ηa
a′�̂ea

, (2.3)

The solution of (2.3) is the largest eigenvector of the following eigenvalue decomposi-
tion:

�̂ηai = γ̂i�̂eai , (2.4)

γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂p

To see the connection with SIR, we can rearrange the above eigenvalue decomposition
equation by adding γ̂i�̂ηai on both sides :

(1+ γ̂i)�̂ηai = γ̂i(�̂η + �̂e)ai

Now we can use the identity that the sum of the between-group variance and within-group
variance equals the total variance, �̂x = �̂η + �̂e, to obtain :

�̂ηai = γ̂i

1+ γ̂i
�̂xai

Comparing this equation with the sample version of (2.2), we see that λ̂i = γ̂i/(1+ γ̂i ), and
ai ∝ b̂i . We now reach the following observation.

Observation I : The SIR variates are the same as the canonical variates except for
possible differences in scaling.
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Canonical variates are often associated with LDA, which can only be theoretically justi-
fied under the normality assumption :

x|Y = j ∼ N(µ j , �c). (2.6)

If we further assume that

the vectorsµ j − µ1, j = 2, · · · , K , spans a d dimensional space, (2.7)

then the Bayes discriminant rule will depend on x only through the first d canonical variates.
This is the traditional support for using only the first few significant canonical variates in
applying LDA. But (2.6) is apparently too stringent. In fact, one can even argue that if
the predictors’ distribution is normal, then there won’t be any interesting patterns to see
in the CRIMCOORDS plots. Thus to fully justify the merit of CRIMCOORDS, we need
to consider a different situation where CRIMCOORDS can serve as an effective way of
conveying the importance informance in the predictors.

By relating the cannocial variates with SIR variates, Observation I brings in a very broad
context for using CRIMCOORDS to reduce the dimension of the predictors. This is because
SIR can be justified under much weaker conditions. We shall discuss these conditions next.

14.2.2 Condition (2.1).

SIR is founded on two assumptions. One of them is the dimension reduction model (2.1).
A general comparison of (2.1) to (2.6)-(2.7) can be made more clear by re-formulating (2.1)
from the inverse regression point of view. Put B = (β1, · · · , βk). (2.1) implies that the
conditional density of Y given x, f (Y |x) depends only on B ′x; f (Y |x) = f (Y |B ′x). Thus
the conditional density of x given Y can be written as

f (x|Y ) = f (Y |x) fx(x)
fY (Y )

= f (Y |B ′x) fx(x)
fY (Y )

= f (Y, B ′x) fx(x)
fY (Y ) fB ′x(B ′x)

= f (B ′x|Y ) fx(x)
fB ′x(B ′x)

(2.8)

Here all f with subscripts are marginal density functions.
For classification problems, the rightmost side in the expression (2.8) gives a useful fac-

torization for comparing the predictor distributions in different classes. This can be summa-
rized by the following statement:

Observation II. For classification problems, (2.1) is equivalent to the condition that for
any two classes, j and j ′, the ratio of their density functions of x depends only on B ′x :

f (x|Y = j)

f (x|Y = j ′) = f (B ′x|Y= j )
f (B ′x|Y= j ′)

(2.9)

It is straightfoward to verify that (2.6) and (2.7) imply (2.9) if we take β1, · · · , βd to be
any basis of the space spanned by the differences in µi ’s.
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14.2.3 Condition on the predictor distribution.

Recall that in addition to (2.1) (or equivalently (2.9) for classification problems), SIR requires
another condition on the distribution of x: (L.D.C): for any b ∈ R p,

the conditional expectation E(b′x|β ′1x, · · · , β ′dx) is linear (2.10)

(2.10) is the same as the condition that for any variate a′x,

cov(a′x, B ′x) = 0 implies E(a′x|B ′x) = a′Ex, (2.11)

(2.11) is much weaker than (2.6)-(2.7). Normality assumption is not needed here. Within
group-covariances also need not be entirely the same.

As we have known before, one sufficient condition for (2.10) (or equivalently (2.11)) to
hold is that

x follows an elliptically-contoured distribution. (2.12)

But this often leads to the impression that (2.12) is equivalent to (2.10). A counter-example
to this impression is indeed the normal model, (2.6) and (2.7). As a mixture of normal
distributions, the marginal distribution of x certainly cannot be elliptically symmetric. As
we have seen in Chapter 8, this predictor distribution condition is not too restrictive.

Remark 2.1. SIR variates are scaled to have unitary variance but canonical variates are
usually scaled to have unitary within-group variance. Since the covariance is no longer the
same for every group, we prefer the way SIR variates are scaled.

14.3 Prior distribution and dimension reduction.

The discussion in Section 2 assumes that the training set consists of i.i.d observations from
the same population as the target population where the test set will come from. This may
not be the case in some applications. This section discusses the case that the training sample
is obtained by stratified sampling. More specifically, a pre-specified number n j of cases
are drawn independently from each class j . The sampling allocation n j/n does not always
match the prior π j (= P{Y = j}), the probability that a random test case from the target
population falls into group j . Recall that under the 0-1 loss, the Bayes rule classifies a future
observation by

max
y
πy fx|Y (x|y). (3.1)

Now suppose the target population follows a dimension reduction model (2.1), or equiva-
lently (2.9). We can translate (3.1) into

max
y
πy f (B ′x|y). (3.2)

This shows that in order to find the Bayes rule, we only have to focus on the e.d.r. variates.
The next question is whether SIR is still applicable for finding the e.d.r. space under

stratified sampling. To answer this question, we study the population version of SIR by
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letting n j tend to the infinity; while fixing p j = n j/n. We notice that SIR takes the same
form as (2.2) but with a slightly different interpretation about the two covariance operators.
By fixing p j = n j/n and �η is still the between group variance-covariance matrix as in the
one-way MANOVA with the weight for group j being p j instead of π j . Similarly, �x is the
overall sample covariance of x.

Theorem 3.1. Suppose the sample is drawn by stratified sampling. Then under (2.9) and
(2.11), the eigenvectors with nonzero eigenvalues in the eigenvalue decomposition(2.2) fall
into the e.d.r. space.

Proof. From (2.11), we see that for any a such that a′�x B = 0, we must have a′�ηa = 0,
or equivalently �ηa = 0. This shows that the eigenspace for (2.2) associated with the zero
eigenvalue must contain any such vector a. Since all non-zero eigenvectors b j must be
orthogonal to a with respect to �x, they must fall into the column space of B. The theorem
is now proved.

14.4 Nonparametric regression after SIR.

Observation I, Observation II and Theorem 3.1 provide a general theoretical foundation for
LDA. But this only justifies the first stage of LDA, namely using the canonical covariates to
reduce the dimension. The further use of linear split rule can only be justified under normal-
ity assumption on the distributions for the e.d.r. variates are completely arbitrary. Without
the normality assumption, it is only natural to apply nonparametric density estimation tech-
niques after dimension reduction. For illustration, we shall discuss only the standard kernel
estimation here. Other nonparametric procedures can similarly be applied.

Let xyi , i = 1, · · · , ny be the sample drawn from class Y = y. The SIR directions,
b̂1, · · · , b̂d , converge to b1, · · · , bd respectively at the usual root n rate, provided that all d
nonzero eigenvalues are distinct. The kernel estimate of the density function of B ′x for class
Y = y takes the following form:

f̂ B ′x(t1, · · · , td) = 1

nhd

ny∑
i=1

"d
j=1K(

b̂′j xyi − t j

h
), (4.1)

where the kernel K(·) is a one-dimensional density function. The bandwidth h has to con-
verge to 0 at an appropriate rate.

(4.1) can be compared to the ”theoretical” kernel density estimate, should we be given B
exactly:

f̃ B ′x(t1, · · · , td) = 1

nh p

ny∑
i=1

"k
j=1K(

b′j xyi − t j

h
). (4.2)

The consistency of (4.2) for estimating fB ′x(t1, · · · , td) is the subject of standard kernel den-
sity estimation. This allows us to conclude that the discriminant rule obtained by substituting
f (B ′x|y) in (3.2) by the kernel estimate (4.1) is asymptotically Bayes.

Example 4.1 Wave recognition. This example is taken from Breiman et al. (1984, pp
49-55); see also Loh and Vanichsetakul (1988). There are three classes and 21 variables.
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Three triangular basic waveforms w1(·), w2(·), w3(·), are involved: for j = 1, · · · , 21,

w1( j) = max(6 − | j − 11|, 0); w2(i) = w1( j − 4); w3( j) = w1( j + 4). (4.3)

Each class is a random convex combination of two basic waveforms with noise added. Let
wi = (wi(1), · · · , wi(21))′, i = 1, 2, 3, and u1, u2, u3 be independent random variables
uniformly distributed on [0, 1]. The predictor x is generated by

x = u1w1 + (1− u1)w2 + ε, for Y = 1

= u2w2 + (1− u2)w3 + ε, for Y = 2 (4.4)

= u3w3 + (1− u3)w1 + ε, for Y = 3,

where ε follows the standard normal distribution.
The vector space parallel to the three-dimensional hyperplane spanned by w1,w2,w3 is

the e.d.r. space. This can be seen by verifying (2.9).
Now generate 200 cases from each group. Then SIR is applied. The eigenvalues are

(0.651, 0.546, 0, · · · ). Kernel estimation is applied. Figures 4.1(a)-(b) show the Bayes
rules with πy = 1/3 and πy = y/6 respectively. Classification boundaries are seen to be
approximately linear. This is as expected. In fact, SIR variates for the population version can
be represented by mixtures of normals with means being on a equilateral triangular, Figure
4.1(c). By a geometric argument, we can show that the contours for the likelihood ratios
must be straight lines.

Another interesting feature about this example is that the e.d.r. space does not depend
on the distribution of uy, y = 1, 2, 3. We generate another 200 cases from each group but
with ui from the density f (u) = 3u2 for u ∈ [0, 1]. Apply SIR and kernel estimation again.
For equal prior πy = 1/3, the result is shown in Figure 4.1(d). Now the Bayes rules are
nonlinear.

14.5 Other SIR type methods for dimension reduction.

SIR may only recover part of the e.d.r. space if the dimension of the hyperplane spanned by
the group means E(x|y) is less than the dimension of the e.d.r. space d. When this happens,
other SIR type methods can help find more e.d.r. directions that cannot be found by using
CRIMCOORDS.

14.5.1 SIR-II.

In our context, SIR-II explores the variation in the group covariance matrices. Let �a =
E[Cov(x|Y )] be the average of the group covariance matrices. Define

�I I = E{[Cov(x|Y )−�a]�−1
x [Cov(x|Y )−�a]}. (5.1)

Then the eigenvalue decomposition for SIR-II is

�I I ci = γi�xci

γ1 ≥ · · · ≥ γp.
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Figure 4.1: Wave Recognition Problem:
(a). SIR’s View with Equal Contour Boundary, πy = 1

3;
(b). SIR’s View with Equal Contour Boundary, πy = y

6 ;
(c). SIR Variates for the Population Version;
(d). SIR’s View with Equal Contour Boundary, (πy = 1

3 , ui − f (u) = 3u, u ∈ [0, 1])

The insertion of the matrix �−1
x in the construction of �I I is to assure the affine invariance

of the SIR-II procedure.
Compared with SIR, a condition stronger than (2.11) is required for SIR-II to find e.d.r.

directions: for any variable a′x,

cov(a′x, B ′x) = 0, implies that a′x is independent of B ′x. (5.2)

Thus the covariance of (B ′x, a′x) for each group Y = y takes a diagonal partition:
cov[(B ′x, a′x)|Y = y] = 0. The first diagonal cov(B ′x|Y = y) depends on y, but the
second one does not: cov(a′x|Y = y) = cov(a′x). This implies that �I I a = 0. The amust
be in the eigenspace with zero eigenvalue. Now it is clear that like SIR, SIR-II can find e.d.r.
directions.
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