
Chapter 7

Principal Hessian Directions

The dimension reduction and visualization techniques introduced so far are based on the
inverse regression point of view. The roles of Y and x are interchanged. In this chapter, a
forward method, principal Hessian Direction( pHd ) (Li 1992, JASA) will be introduced. Let
f (x) be the regression function E(Y |x), which is a p dimensional function. Consider the
Hessian matrix H (x) of f (x),

H (x) = the p by p matrix with the i j th entry equal to
∂2

∂xi∂x j
f (x)

Hessian matrices are important in studying multivariate nonlinear functions. The methodol-
ogy of pHd focuses on the ultilization of the properties of Hessian matrices for dimension
reduction and visualization. Similar to SIR, there are a few variants in the approach of pHd.
For more recent development on PHD, see Cook(1998).

7.1 Principal Hessian directions.

The Hessian matrix typically varies as x changes unless the surface is quadratic. Difficulties
associated with the curse of dimensionality arise quickly if we were to estimate it for each
location. Instead, we turn to the average Hessian,

H̄ = E H (x)

We define the principal Hessian directions to be the eigenvectors b1, · · · , bp of the matrix
H̄�x, where �x denotes the covariance matrix of x :

H̄�xb j = λ j b j , j = 1, · · · , p (1.1)

|λ1| ≥ · · · ≥ |λp|
Why not defining the principal Hessian directions by the eigenvalue decomposition of

the average Hessian H̄ ? One reason is that with right-multiplication of �x, the procedure
becomes invariant under affine transformation of x. This is an important property to have for
our purpose of visualization and dimension reduction.

Because of the affine invariance, we may assume that the covariance matrix of x is I .
This often simplifies the discussion.
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7.2 Dimension reduction.

Recall the dimension reduction model (1.1) of chapter 1. The regression function takes the
form

E(Y |x) = f (x) = h(β ′1x, · · · , β ′K x), (2.1)

for some function h. Assume that h is twice differentiable.

Lemma 7.3.1 Under (2.1), the rank of the average Hessian matrix, H̄ , is at most K . More-
over, the p.h.d.’s with nonzero eigenvalues are in the e.d.r. space B(namely, the space
spanned by the β vectors.)

Proof. Let B = (β1, · · · , βK ) and t = (β ′1x, · · · , β ′K x)′ = B′x. Then f (x) = h(B′x). To
differentiate the Hessian matrix for the function h from that for f , we use the subscripts
conveniently. Thus by the chain rule, H f (x) = BHh(t)B′. Now it is clear that for any
direction, v, in the orthogonal complement of B, we have Hx(x)v = 0. Hence the rank of H̄
is at most K . In addition, for any p.h.d. bj with λ j �= 0, we have 0 = (v′ H̄)�xb j = v′λ j b j ,
implying that b j is orthogonal to v. Therefore b j falls into the e.d.r. space B. The proof is
complete. �

This lemma indicates that if we can estimate the average Hessian matrix well, then the
associated p.h.d.’s with significant nonzero eigenvalues can be used to find e.d.r. directions.
We shall use Stein’s lemma to suggest an estimate of the average Hessian matrix in section
7.3.

7.3 Stein’s lemma and estimates of the PHD’s.

We shall show how to use Stein’s lemma to estimate the PHD’s when the distribution of x is
normal.

7.3.1 Stein’s lemma.

Recall Stein’s lemma from Stein (1981).

Lemma 7.3.1.(Stein 1981, Lemma 4) If the random variable z is normal, with mean ξ and
variance 1, then

E(z − ξ)l(z) = El̇(z)

E(z − ξ)2l(Z) = El(z)+ El̈(z)

where, in each case, all derivatives involved are assumed to exist in the sense that an indefi-
nite integral of each is the next preceding one, and to have finite expectations.
Proof. The first result is from integration by part. The second ressult follows from the first
result. QED. �

Using Stein’s lemma, it is easy to derive the following corollary.
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Corollary 7. 3.1. Suppose x is normal with mean µx and the covariance �x. Let µy be the
mean of Y . Then the average Hessian matrix H̄x is related to the weighted covariance

�yxx = E(Y − µy)(x− µx)(x− µx)
′

through the identity
H̄x = �−1

x �yxx�
−1
x .

Proof. After standardizing x to have mean 0 and the identity covariance by an affine trans-
formation like z = �

−1/2
x (x − µ), we proceed as if x is standard normal. Now applying

Stein’s lemma, we see that
H̄ = E(Y − µy)xx′.

The proof is complete. �

From this corollary, we can find p.h.d.’s based on the weighted covariance matrix �yxx

as the following theorem suggests.

Theorem 7.3.1. When x is normal, the p.h.d.’s, b j , j = 1, · · · , p, can be obtained by the
eigenvectors for the eigenvalue decomposition of �yxx with respect to �x :

�yxxb j = λ j�xb j , f or j = 1, . . . , p.

Observe that adding or subtracting a linear function of x from y does not change the
Hessian matrix. Hence instead of using y in Theorem 7.3.1, we may replace it by the residual
after the linear least squares fit.

Theorem 7.3.2. Suppose x is normal. Let r = y − a − b′lsx be the residual for the lin-
ear regression of y on x, where a, bls are the least squares estimates so that Er = 0, and
cov(r, x) = 0. Then we have

H̄x = �−1
x �rxx�

−1
x ,

where
�rxx = Er(x− µx)(x− µx)

′

Moreover, the p.h.d.’s, bj , j = 1, · · · , p, can be obtained by the eigenvalue decomposition
of �rxx with respect to �x :

�rxxb j = λ j�xb j , for j = 1, . . . , p.

Corollary 7.3.1 can also be applied to show that polynomial regression can be used to
estimate p.h.d.’s, as the following corollary suggests.
Corollary 7.3.2. Suppose x is normal and consider a polynomial fitting :

min
Q(x)

E(y − Q(x))2
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where Q(x) is any polynomial function of x with degrees no greater than q. Then the average
Hessian matrix for the fitted polynomial, is the same as the average Hessian matrix for y, if
q is larger than 1.

Proof. Let r̃ be the residual, y − Q̃(x), where Q̃(x) is the fitted polynomial. Then r̃ is
uncorrelated with any polynomial of x with degree q or less. In particular, it is uncorrelated
with any element in the random matrix (x− µx)(x− µx)

′. Now we see that

E(y − µy)(x− µx)(x− µx)
′ = E(y − r̃ − µy)(x− µx)(x− µx)

′

= E(Q̃(x)− E Q̃(x))(x− µx)(x− µx)
′

Corollary 3.1 implies that the average Hessian matrices for y and Q̃(x) are the same, com-
pleting the proof. �

7.3.2 Estimates for principal Hessian directions.

Theorem 7.3.1 can be used to suggest estimates for p.h.d.’s from an i.i.d. sample, (y1, x1),
· · ·, (yn, xn). Let x̄ and �̂x be the sample mean and the sample covariance of x. Then

(1). Form the matrix �̂yxx = 1/n
∑n

i=1(yi − ȳ)(xi − x̄)(xi − x̄)′.
(2). Conduct an eigenvalue decomposition of �̂yxx with respect to �̂x :

�̂yxxb̂y j = λ̂y j �̂xb̂y j , j = 1, · · · , p

|λ̂y1| ≥ · · · ≥ |λ̂yp|.

Instead of the above y− based method, we may use Theorem 3.2. and suggest the same
procedure but with yi − ȳ being replaced by the residual r̂i = yi − â − b̂′ls xi , where â, b̂ls

are the least squares estimates for the linear regression of y against x :
(0). Find the residuals r̂i , i = 1, · · · , n.
(1). Form the matrix �̂rxx = 1/n

∑n
i=1 r̂i (xi − x̄)(xi − x̄)′.

(2). Conduct the eigenvalue decomposition of �̂rxx with respect to �̂x :

�̂rxxb̂r j = λ̂r j �̂xb̂r j , j = 1, · · · , p

|λ̂r1| ≥ · · · ≥ |λ̂rp|.

Corollary 7.3.2 suggests yet another way of finding the e.d.r. directions. First fit y by a
quadratic polynomial of x. The Hessian Matrix for the fitted quadratic function, say B̂, can
be easily formed from the estimated quadratic and cross product terms. Then we take the
eigenvalue decomposition of the matrix B̂�̂x to get the p.h.d.’s. This method ( the q−based
p.h.d., hereafter) is related with the canonical analysis for exploring and exploiting quadratic
response surfaces where the eigenvalue decomposition is taken for the Hessian matrix of the
fitted quadratic surface with respect to the identity matrix. Box (1954), and Box and Draper
(1987), for example, have illustrated well how their techniques have been successfully used
to locate stationary points and to obtain a parsimonious description of these points in many
designed chemical experiments.
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7.4 Sampling properties for normal carriers.

The root-n consistency of the pHd estimates is not hard to establish because our method of
moments based estimates of the relevant matrices are clearly root n consistent. We need only
to apply standard perturbation formulae for obtaining the asymptotic distributions.

As in the discussion of SIR, the closeness measure between the estimated e.d.r. space,
B̂y for y based pHd, (respectively, B̂r ), and the true e.d.r. space is given by the squared trace
correlation, R2(B̂y) (respectively, R2(B̂r )), which is the average of the squared canonical
correlation coefficients between b̂′y j x, j = 1, · · · , K , (respectively b̂′r j x, j = 1, · · · , K ), and
β ′j x, j = 1, · · · , K . The closer to one this measure is, the sharper the viewing angle will be.
The following theorem gives an approximation for the expected value of this quantity.

Theorem 7.4.1. Assume that x is normal and that�yxx has rank k. Then under the dimension
reduction model assumption, we have

R2(B̂y) = 1− (p − k)n−1
k∑

j=1

(−1+ λ−2
j var((y − µy)b

′
j (x− µx)))+ o(n−1) (4.1)

and

R2(B̂r ) = 1− (p − k)n−1
k∑

j=1

(−1+ λ−2
j var(rb′j (x− µx)))+ o(n−1) (4.2)

Theorem 7.4.2. Under the same conditions as in the Theorem 7.4.1, we have

n1/2∑p
j=k+1 λ̂ j ∼ N(0, 2(p − k)var(·)) (4.3)

n
∑p

j=k+1 λ̂
2
j ∼ 2var(·)χ2

(p−k+1)(p−k)/2 (4.4)

where respectively, λ̂ j denotes λ̂y j or λ̂r j ; var(·) equals var y or var r .
We can use Theorem 4.2 to suggest whether a component found is likely to be real or

not, by estimating var y (respectively, var r ) with the sample variance of y (respectively,
the mean squares for residuals (n − p)−1�n

i=1r̂2
i ).

Remark 4.1. Theorem 4.2 suggests that the residual based estimate is more powerful in
detecting a real component because var r is typically smaller than var y. See Cook(1998)
for more discussion on some potential inference problems with y-based PHD.

Remark 4.2. For the q− based method, the asymptotic result will be similar. We need only
to replace r by the residual of the quadratic fit.

7.5 Linear conditional expectation for x.

The validity of using pHd to estimate e.d.r. directions is justified earlier for the noraml x via
Stein’s lemma. Now we like to study how the method behaves under the weaker condition,
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the (L.D.C) used in the theory of SIR : for any b ∈ R p

E(b′x|β ′j x, j = 1, · · · , K ) is linear in β ′j x’s (5.1)

Theorem 7.5.1. Under the dimension reduction model assumption and (5.1), the e.d.r. space
B is invariant under the transformation induced by the matrix �−1

x �yxx, in the sense that

{�yxxb : b ∈ B} ⊆ {�xb : b ∈ B}

Proof. Consider any vector u such that u′�xb = 0 for any b in B. Then (5.1) implies
that E(u′x|β ′j x, j = 1, ..., K ) = 0. It follows that u′�yxxb = E((Y − µy)E(u′x|β ′j x, j =
1, ..., K )x′b) = 0. This completes the proof. �

Since invariance spaces of a matrix are spanned by its eigenvectors, this theorem suggests
that the eigenvectors b j ’s can be used to find e.d.r. directions. For instance, if the true e.d.r.
space has only one-dimension, k = 1, then one of the bj ’s must be an e.d.r. direction unless
�yxxβ1 = 0 , or equivalently,

cov(y, (β ′1x− µx)
2) = 0. (5.2)

Thus although it is not clear which b j is the right one to use, for the purpose of data visu-
alization we can display all p bivariate plots, y against b j ’s, and then choose the one that
shows the most interesting structure. But if (5.2) does occur, then we cannot find the e.d.r.
direction by this method. Yet we may still hope that some transformation on y might avoid
(5.2). Suitably combining second moment SIR estimates is likely to be more productive.
Likewise, the case that k = 2 leads to viewing

(p
2

)
sets of three-dimension plots. Some

troubles may begin to occur when the dimension of e.d.r. space, k, gets larger because the
combination number increases quickly. Note that Theorem 7.5.1 does not promise that large
eigenvectors will always be the true e.d.r. directions. But our experience shows that this is
indeed very likely to be the case. Pathological cases can exist of course. This is even more
transparent for the elliptically symmetric distributions.

Theorem 7.5.2. Assume that x follows an elliptically symmetric distribution. Under the
dimension reduction model assumption, for the eigenvalues λ j of the population version of
y-based pHd, at least p−K of them take a common value. In addition, all other eigenvectors
are e.d.r. directions, if p − K is greater than K .

Proof. Due to affine invariance, it suffices to consider that case that x is spherically sym-
metric with identity covariance and mean 0. Let P1 be the projection matrix of rank K
with B as the range space, and P2 = I − P1. We need only to show that the range of P2

is a subspace of some eigenspace of �yxx. First, the result of Theorem 7.5.1 implies that
0 = P2�yxx P1 = P1�yxx P2, or equivalently,

�yxx P2 = P2�yxx P2
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Fundamental properties from elliptical distributions show that given P1x and ‖x‖2, P2x is
still spherically symmetric with mean 0, and the covariance matrix is (p − K )−1(‖x‖2 −
‖P1x‖2)P2. From this we see that

P2�yxx P2 = E((y−µy)E(P2xx′P2|P1x, ‖x‖2)) = (p−k)−1[E(y−µy)(‖x‖2−‖P1x‖2)]P2

Thus �yxx P2 is proportional to P2, implying that the range space of P2 is contained in an
eigenspace of �yxx. This proves the theorem. �

This theorem does not say anything about the size of the common eigenvalue,

(p − k)−1E[(y − µy)(‖x‖2 − ‖P1x‖2)] = (p − k)−1 E(y − µy)‖P2x‖2

= cov(E(y|x), (p− k)−1‖P2x‖2)

But we expect it to be small for most cases. If p is large, (p − k)−1‖P2x‖2, becomes
nearly independent of P1x (unless ||x|| is a constant), and hence is expected to be nearly
uncorrelated with E(y|x) = E(y|P1x). Of course, expections do exist.

It is also clear that our discussion applies to the residual based eigenvectors as defined in
Theorem 7.3.2.

7.6 Extension.

Nonlinear transformations of y can be applied before using pHd. For example, we may want
to trim out large y values in order to decrease the sensitivity to outliers. We may also use the
absolute value of the residual to form the estimate.

We now draw a connection between pHd and second moment based SIR methodology.
Let’s partition the range of y into H intervals, Ih, h = 1, ..., H . Then apply the indicator
transformation ỹ = δh(y) = 1, or 0, depending on whether y falls into the hth interval or
not. Denote ph = P{y ∈ Ih}. Then we have

�ỹxx = E(δh(y)− ph)(x− µx)(x− µx)
′ = ph[E((x− µx)(x− µx)

′|y ∈ Ih)−�x].

The y-based pHd theorem can be applied to ỹ.

Corollary 7.6.1. Assume that x is normal. For each slice h, conduct the eigenvalue decom-
position of the sliced second moment matrix E((x − µx)(x − µx)

′|Y ∈ Ih) with respect to
�x. Then the eigenvectors with eigenvalues distinct from 1 are e.d.r. directions.

The sample version is easy to obtain. First form the sliced second moment matrix (nh −
1)−1∑

xi∈Ih
(xi − x̄)(xi − x̄)′, where nh is the number of cases in the hth slice. Then take

the eigenvalue decomposition of this matrix with respect to �̂x. Let the eigenvalues λ̂hj ’s be
arranged to have the order |λ̂h1 − 1| ≥ · · · ≥ |̂λhp − 1|.

The sliced second moment matrix E((x−µx)(x−µx)
′|y ∈ Ih) discussed above is closely

related to the conditional covariance cov(x|y ∈ Ih) , the core of some specific suggestions
for applying second moments in the SIR approach as discussed in Chapter 5. The difference
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between these two matrices is just a rank-one matrix, (mh − µx)(mh − µx)
′, where mh =

E((x− µx)|y ∈ Ih) is the core of the first moment based SIR estimate.

Remark. Limitations. All methods have limitations. SIR and pHd are no exceptions.
We shall identify cases that e.d.r. directions cannot be estimated from any transformation
version of p.H.d. For simplicity of discussion, take K = 1, and concentrate on the case
that E(x|y) = Ex, which is the condition to nullify the power of the first moment based
SIR. Under this condition, the least squares estimate bls is equal to 0. Thus the residual-
based estimate is the same as the y-based estimate. We are interested in knowing when
the weighted covariance matrix �T (y)xx = E(T (y) − ET (y))(x − µx)(x − µx)

′ will be
degenerated to 0 for any transformation T (y), in which case no e.d.r. directions can be
detected. The following Lemma offers an answer.

Lemma. Assume x is normal and consider (1.1) of Chapter 1 with K = 1. Then,

�T (y)xx = 0, for any transformation T (y),

if and only if
E[(β ′1(x− µx))

2|Y = y] does not depend on y. (6.3)

It is easy to interpret this result from the inverse regression point of view. In general,
the conditional distribution of β ′1x given y should depend on y under (1.1). But if this
dependence is only through moments of order higher than two, then (6.3) will hold. PHD or
any first or second moment based SIR will not find any significant directions. This leaves
room for introducing more complicated procedures based on features other than the first two
moments of the inverse regression.

7.7 Examples.

Example 7.1. The model used to generate the data is given by

y = cos(2β ′1x)− cos(β ′2x)+ .5ε, (7.1)

where x has p = 10 dimensions, β1 = (1, 0, · · ·)′, β2 = (0, 1, 0, · · ·)′, all coordinates of x
and ε are i.i.d. standard normal random variables. For n = 400, we study the performance
of the residual-based estimate b̂r j ’s, after 100 simulation runs. A histogram of the closeness
measure R2(B̂r) is given in Figure 7.1. The views from the first two directions found in a
typical run are given in Figure 7.3, compared with the best views, views from β1, β2, given
in Figure 7.2. One could better appreciate how they are similar to each other by spinning the
two rotation plots and view the data cloud from all angles. Only two directions are found to
be significant.
Example 7.2. This example is used to study how violation of the (L.D.C.) might affect the
estimation. We consider the model

y = β ′x sin(2β ′x) (7.2)
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Figure 7.1: Histogram of R2(B̂) for 100 runs.

Figure 7.2: Best views of the example 7.1

where x is uniform on a ten-dimensional cube, [−1/2, 1/2]10. First when a direction for β
is chosen at random, it is found that the p.H.d. method finds the true direction as well as if x
is indeed normal.

Instead of reporting these favorable cases, we want to study the worst situation. Consider
β ′x as a sum of p independent random variables and borrow insight from the central limit
theorem. We can anticipate the worst case to happen when β is zero on all but two coor-
dinates, the case when β ′x is the least normal in a sense. Now for those directions on the
plan spanned by first two coordinates, there are 4 good directions for which the linear con-
ditional expectation condition holds; namely the two coordinate axes and the two diagonal
lines. Hence we decide to choose β = (1, 2, 0, · · ·)′ on the ground that this direction is mid-
way between the two good directions (1, 1, · · ·)′, and (0, 1, 0, · · ·)′. We generate n = 400
observations, and use the y-based method to find the e.d.r. direction. From the output given
in Table 2, we see some bias in the first direction found. But a close look at the p-values,
it is found that the second direction is marginally significant. In fact, a combination of the
first two directions, as shown in Figure 7.4 (right), yields a high quality reconstruction of the
true curve, shown on the left. By pitching the rotation plots used in producing Figure 7.4 till
the y axis is perpendicular to the screen, Figure 7.5 shows how well the distribution for the
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Figure 7.3: Views by the p.h.d. method for Example 7.1

first two projected directions matches the distribution of the first two coordinates of x. This
demonstrates the potential of our method to find directions b that violate the linear condi-
tional expectation most seriously. One can also argue that under our parameter specification,
we can view (4.2) as a two component model with β1 = (1, 0, · · ·)′, and β2 = (0, 1, · · ·)′.
The linear conditional expectation condition is now satisfied, explaining why we can find
two directions. Of course, the p-values are only suggestive because of the violation of nor-
mality. Judgement based on the pattern of the whole sequence of p-values should be more
informative than the individual numbers. We see the drastic increase from .07 to .70 as a
strong indication that the third component is not likely to be informative. The residual-based
method is also attempted , which yields almost the same result as the one reported here. We
conclude this example by reporting that as we enlarge the range of x so that the response
curve looks more like an M-shape, pHd begins to lose power in detecting the e.d.r. direction.
This is because the conditional variance of β ′x given y becomes more homogeneous, and
Lemma 7.3.1 begins to take effect. It would be interesting to see how well PPR works in
such cases.

Figure 7.4: Best view(left) and the view by the p.h.d. method for Example 7.2

Example 7.3. This example shows how simple transformations can help p.H.d.. We consider



7.7 Examples. 71

Figure 7.5: Distribution of x1 and x2(left), compared with distribution of first two p.h.d.’s

the model

y = 1

3
(β ′1x)3 − (β ′1x)(β ′2x)2

for generating the data. The surface of this function is known as the monkey saddle. We take
β1 = (1, 0, · · ·)′, β2 = (0, 1, 0, · · ·)′, and generate n = 300 data points. First, a histogram
of y suggests a long tail distribution. To avoid the dominance of large y in the analysis, we
cut out those cases with the absolute value of y greater than 2. This leaves 261 points in
the sample. We find the y-based and the residual-based methods unsuccessful, as indicated
by the P-values. Then we take the absolute value transformation on the residuals, treat them
as y, and proceed with the p.H.d. method. Two directions are found significant. The best
views for y and the views based on the estimated directions are given in Figures 7.6, 7.7.
Three branches going upward and downward in the monkey saddle can be identified well by
spinning these plots on the computer. Other transformations and other methods of handling
large y values are worth trying.

Figure 7.6: Best views of the monkey saddle.

Example 4.4.1 (continued). We continue the analysis of Ozone Data of Example 4.4.1 from
chpater 4. Instead of using SIR to study the residuals, we apply by the p.H.d. method,
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Figure 7.7: Views by the p.h.d. method for monkey saddle.

treating the residual as y. One component is found to be significant. We use a forward
selection procedure to find that this component can be explained by x3, x5, x6 with about
90% R-squared (if including x8 then R-squared can be about 96%). We then run p.H.d.
again, using only x3, x5, x6 as the regressors. Again one component is found, denoted as
b̂phd . Figure 7.8 gives the plot of the residual against this component. A quadratic pattern
in this figure is detected by eyes and is confirmed by fitting a quadratic polynomial. The
finding here is quite different from SIR plot. This indicates that it may be necessary to find
a model that would use the directions from both SIR and PHD directions.

Figure 7.8: Ozone data(continued from Example 4.4.1), Residuals against the direction
found by p.h.d.


