
Note on Support Vector Machine

1. Why (1.9)-(1.10) is equivalent to (1.8) ?

In (1.8) , we can restrict to those w with jjwjj = 1; that is in (1.6), the normal vector w has length 1.

Then w � xi is just the projection of xI along the direction w. Plotting all the values of w � xi; i = 1; � � � ; l
together in a line, those with yi = 1 must be separated from those with Yi = �1.

� � � � j � � �

So the value of b that maximizes (1.8) must be chosen so that the minimum is equal to a half of the

di�erence between the smallest value from group 1 and the largest value from group 2. Therefore (1.8) is

equivalent to

Subject to

jjwjj = 1 (1)

, maximize

min
i:yi=1

w � xi � max
i:yi=�1

w � xi (2)

In contrast, (1.10) says that mini:yi=1w � xi is equal to 1 � b and maxi:yi=�1w � xi is equal to �1 � b.

So (1.10) is the same as setting the value from (2) to be equal to 2.

It should be clear now why the two problems are the same. Suppose w is a vector subject to (1.10),

then the corresponding normalized vector w=jjwjj, should satisfy (1), and it will have 2=jjwjj as the value of
(2). Therefore minimizing over (1.9) is the same as maximizing (2).

2. Convex hull. The dual optimization problem (1.16)(1.17) that the support vector machine method

tries to solve can be interpreted as �ning the shortest distance between the convex hull of points from one

group and the convex hull of points from the other group.

A point , say A, in the convex hull of group 1, by de�nition, can be represented as

A =
X

i:yi=1

�ixi

with X

i:Yi=1

�i = 1 (3)

. A point B in the convex hull for group 2 can be de�ned in the same way. It is clear now the second

summation term in (1.16) is equal to the squared distancejjA�Bjj2 between a point A from the �rst convex

hull to a point B in the second convex hull :

jjA� Bjj2 = jj
X

i:Yi=1

�ixi �
X

i:Yi=�1

�ixijj
2 = jj

lX

i=1

Yi�ixijj
2 =
X

i;j

�i�jYiYj(xi � xj) (4)

Furthermore, (3) and the analogous condition for group 2, imply (1.17). In fact, maximizing (1.16) is

the same as minimizing (4). To see this, we �rst observe that for any � satisfying (1.17) and (3), to maximize

(1.16) we can drop the �rst term in (1.16) because this term is now equal to 2 , which is a constant. Because

of the minus sign , the maximization problem of (1.16) is the same as the minimizing (4).

Now suppose we already �nd the solution (A�

; B
�) for minimizing (4). We can scale this solution by a

factor c, the corresponding value for (1.16) will become

2c� 1=2c2jjA� � B
�jj2

Maximizing over c, the solution is c = 2=jjA� �B
�jj2 and (1.16) becomes 2=jjA� � B

�jj2.
The connection is now clear. The maximization of (1.16) is the same as maximizing

2=jjA� Bjj2
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which of course is the same as minimizing the squared distance jjA� Bjj2.

3. Does the factor of 1=2 in the second term of (1.16) matter ? The answer is No. Any positive number

will lead to the same weight (up to a proportionality constant) solution. The intercept b in (1.18) is easy to

�nd. An easy way to understand why is to think of rescaling the predictors by a constant. All you have to

do is to pick up any support point (a point with the corresponding �i > 0) from each group ( say x
�

; x
��),

compute their projection along the normal vector to the separation plane , and then take the average to be

the value of -b. Thus b = �(1=2)
P

i �ixi � (x �+x � �).

4. Another aspect can be drawn is that if the points from two groups are indeed separable, then we can

also separate them after any a�ne transformation. The decision function (1.18) is not invariant under a�ne

transformation though. Thus it is easy to see that any separation hyperplane can be the optimal solution

with some appropriate a�ne transformation on x. In other words, with an appropriate choice of a matrix

A and by setting the inner product (kernel) between two points xi and xj as k(xi; xj) = x
0

iA
0

Axj , we can

make any separation hyperplane a solution of (1.33).

5. In general, no matter which space the data points are embedded into, as long as the dimension of the

space is greater than the sample size (n) , the data points will occupy a subspace with n dimensions (if no

points are collinear). When this happens, separation hyper-planes always exist. This explains why Support

vector machine often "works well" when using a kernel of higher order. However, the ability to separate

points in the training set does not guarantee its performance when generalized to the test set.

6. Which kernel to use ? This is still an unanswered question.

7. Connection to the concept of e.d.r. directions.

Consider the conditional density functions of x given Y , f(xjY = 1); f(xjY = �1). Let A = fx :

f(xjY = 1) > 0g and B = fx : f(xjY = �1) > 0g. If A and B can be separated by a hyperplane, this

would mean that we can �nd a direction w and a constant c so that wx
> c for any x 2 A and w

0

x < c for

any x 2 B. We can write Y = g(wx) where g(u) = 1; for; u > c and g(u) = �1; for u < c. Thus u is an

e.d.r. direction. If there are more than one hyperplanes that can separate A from B, then each of them can

provide an e.d.r. direction. Thus in general, the e.d.r. space is not well-de�ned. Cook(1994) attempts to

resolve this di�culty by considering the intersection of all e.d.r. space and call it the "central space". While

this notion is useful in discussing regression graphics, it does not help much here.

Let A� and B
� be the convex hull of A and B respectively. The convex hull of the sample points from

each group, (denoted by C1 and C2), will be contained in A
� and B

� respectively. Thus from the training

sample we can only �nd separation directions between C1 and C2.

8. Suppose that f(x) is any function such that f(x) = 1; for x 2 A and f(x) = �1; for; x 2 B. Suppose

a kernel function k(�; �) is used in applying support vector machine. Then if f(�) can be approximated well

by linear combinations of
P

i �iyik(xi; �), then the resulting classi�cation rule would be nearly optimal.

9. The ability of Support vector machine to handle large noises in the training sample may be question-

able. More regularization conditions need to be imposed.
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