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In Anna Karenina, Leo Tolstoy wrote: ‘All happy families
resemble one another, each unhappy family is unhappy
in its own way’. Oddly enough, this might be a rather apt
analogy for cancer. The highly regulated molecular events
that are crucial for normal development and function are
very similar between individuals, but in cancer, genetic
and epigenetic alterations result in cascades of deregu-
lated molecular events, which lead to genetically com-
plex, highly individual tumours. The complexity is
daunting, but finding consistencies that can be therapeu-
tically exploited is vital for the development and clinical
application of new treatments. Until recently, the tools
that are required to attack this problem were not avail-
able, but the sequencing of the human genome and the
development of global approaches for surveying virtually
the entire expressed genome make this type of enquiry
possible. The challenge has moved from deciphering the
genetic code to understanding how it is used, or, in the
case of cancer, misused.

DNA microarrays enable the acquisition of gene-
expression data on a scale that was previously unimagin-
able. Computational methods for analysing vast
amounts of data are being developed and quantitative
tools for analysing networks are now available1–3. This
will facilitate the detection of meaningful patterns in
these complex gene-expression signatures. Technology
and bioinformatics have provided an unprecedented

opportunity to explore the development and function
of the nervous system and to analyse diseases of the
nervous system such as brain cancer.

The brain cancer problem
Let us begin by building a case for the importance of the
brain cancer problem to the neuroscience community.
First, there is a public-health imperative. Brain cancer is
now the leading cause of death from cancer in children
under the age of 15 and the second leading cause of death
from cancer from age 15 to 34. In adults, brain cancer is
proportionately less common than other cancers, yet it
accounts for a disproportionate percentage of deaths
from cancer4.At present, patients with glioblastoma (the
most common form of GLIOMA in adults) have a median
survival time of 12 months from the time of diagnosis,
despite aggressive surgery, radiation and chemotherapy5.
These numbers are not good by anyone’s standards.

Second, there is a scientific imperative. Traditionally,
neuroscientists have focused on degenerative diseases
and developmental brain disorders, which provide
valuable insights into the normal development and
function of the nervous system. Brain tumours were
considered to be too intractable, and not enough was
known about them to provoke widespread interest.
Recent advances in brain cancer genetics and the devel-
opment of mouse brain cancer models show that many
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METASTASIS 

The spread of cancer cells from
one organ or tissue to another,
usually though the blood stream
or the lymphatic system.

potentially in the formation of oligodendroglial and
astrocytic tumours, the Bailey and Cushing model 
has remained a guiding principle for brain tumour
classification (FIG. 1)7–12. Primary brain tumours that are
composed of cells that resemble astrocytes are classified
as astrocytomas. Similarly, tumours that resemble
oligodendrocytes and ependymal cells are classified as
oligodendrogliomas and ependymomas. Cerebellar
tumours composed of small round cells that resemble
the neuronal precursor cells of the external granule cell
layer are classified as medulloblastomas. Immunohisto-
chemistochemical protein markers of astrocytic or
neuronal differentiation, such as glial fibrillary acidic
protein and synaptophysin, respectively, are used to
corroborate the microscopic diagnosis13.

According to this scheme, less malignant tumours
resemble their normal tissue counterparts, whereas more
malignant tumours resemble less differentiated precursor
cells. So, anaplasia (‘de-differentiated appearance’) implies
biological aggressiveness. Tumours are graded according
to the extent of anaplasia that they show, and the presence
and extent of other microscopic features that connote
aggressive behaviour, such as mitotic activity, tumour
necrosis and angiogenesis. Low-grade astrocytomas have
some anaplasia, but lack mitotic activity, necrosis and
vascular proliferation. Intermediate-grade astrocytomas
(anaplastic astrocytomas) have more anaplasia and
readily detectable mitotic activity, but no necrosis or
angiogenesis. Glioblastomas, the most malignant grade of
astrocytoma, are highly anaplastic and contain mitotic
activity, tumour necrosis and/or vascular proliferation.
Medulloblastomas, also a highly malignant type of
tumour, are like glioblastomas with regard to their ‘blastic’
(or highly anaplastic) appearance. This classification
and grading system has proved useful for predicting the
overall survival for groups of patients with brain
tumours. However, it provides relatively limited insight
into the underlying molecular lesions. Furthermore,
clinically relevant subsets that might differ significantly in
their clinical course and response to therapy cannot be
identified by the current classification system.

Recent work shows that chronic activation of key
intracellular signalling pathways might be crucial for the
formation and progression of brain cancer. Chronic
activation of the phosphatidylinositol 3-kinase and the
Ras–MAPK (mitogen-activated protein kinase) signalling
pathways, which arise from a range of upstream genetic
lesions, promotes glioma formation and progression in
mouse genetic models14. Similarly, unopposed sonic
hedgehog (SHH) pathway activation (on the basis of
patched (PTC) haploinsufficiency), disruption of DNA
repair owing to deficiency of DNA ligase IV, and com-
bined cell-cycle dysregulation and p53 dysfunction all
promote the formation of medulloblastoma in mouse
genetic models15–19. Correlative studies of patient samples
show chronic activation of many of these pathways 
in tumour samples20,21. The same pathways that promote
tumour formation and progression might actually sensi-
tize cancer cells to targeted pathway inhibitors22–24.
Therefore, new classification systems for brain cancer
need to be developed that can identify alterations in the

of the pivotal mechanisms that are important for nor-
mal brain development are precisely those that have
gone awry in brain cancer. Therefore, there is much to
be learned about the development and function of the
nervous system from studying brain cancer.

Biology of brain tumours
Primary brain tumours arise from the constituent cells
of the CNS or their meningeal covering, whereas sec-
ondary brain tumours METASTASIZE from a distant site. In
1928, Bailey and Cushing suggested that brain tumours
could be classified by their microscopic resemblance to a
presumed CNS cell of origin or its developmental pre-
cursor6. Although recent work shows a more complex
pattern, in which neural stem cells have an important
role in both glial and neuronal development, and
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Figure 1 | Classification scheme for brain tumours. a | The present classification scheme for
brain tumours. This classic model is based on the assumption that tumour cells of a specific lineage
share microscopic similarity to a presumed neural or glial precursor. The black arrows indicate the
hypothesized normal development and the red arrows indicate the hypothesized cell of origin of
CNS tumours. It should be emphasized that recent work highlights a key role for neural stem cells in
normal development and potentially in the formation of brain tumours (dotted blue arrows)7–9,11,12. 
b | According to this scheme, less malignant tumours resemble their normal tissue counterparts;
more malignant tumours resemble less differentiated precursor cells. Tumours are graded on the
basis of the extent of anaplasia (de-differentiation) and other microscopic features that connote
aggressive behaviour — such as mitotic activity, tumour necrosis and angiogenesis. Low-grade
astrocytomas (grade II) have some anaplasia, but lack mitotic activity and necrosis. Intermediate-
grade astrocytomas (grade III) have more anaplasia and readily detectable mitotic activity, but not
necrosis. The white arrow points to a mitotic figure. Glioblastomas, which are the most malignant
grade of astrocytoma, are highly anaplastic and contain mitotic activity and tumour necrosis.
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loss of heterozygosity by SINGLE NUCLEOTIDE POLYMORPHISM

microarrays; analysing chromosomal gains and losses
by comparative genomic-hybridization arrays; deter-
mining global patterns of methylation, acetylation and
ALTERNATIVE SPLICING on microarrays; and identifying char-
acteristic proteomic profiles will probably all play a part
in the new molecular diagnostics26–31. Gene-expression
profiling will probably be central to this effort. There are
many ways to globally survey the expressed genome, but,
in this review, we focus on the role of DNA microarrays
in developing predictive molecular diagnostics for
patients with brain tumours (BOX 1).

pathways and networks that drive their progression, and
which could also potentially be used to select them for
targeted therapy.

Predictive molecular diagnostics
A revolution in clinical medicine. The genomic revolution
is transforming clinical medicine. Instead of the current
model of population risk assessment and empirical treat-
ment, we will move to one of predictive individualized
care based on molecular classification and targeted ther-
apy25. High-throughput genomic techniques will acceler-
ate this process. Screening for gene polymorphisms and

SINGLE NUCLEOTIDE

POLYMORPHISMS  

Bi-allelic (typically) base pair
substitutions, which are the
most common forms of genetic
polymorphism.

ALTERNATIVE SPLICING 

During splicing, introns are
excised from RNA after
transcription and the cut ends
are rejoined to form a
continuous message. Alternative
splicing allows the production of
different messages from the
same DNA molecule.

Box 1 | DNA microarrays

DNA-microarray analysis is most useful when it can be integrated with clinical, imaging and histological data. Substantial
effort is required to develop appropriate databases that contain key clinical information, including patient characteristics
such as age and sex. Brain imaging is routinely undertaken and images are housed in a central database. Histological
photomicrographs document cellular morphology, and clinical data are entered in real time through wireless input
devices to ensure accurate and up-to-date information. Biopsy material is preserved for future analyses, linked to clinical
data and used to extract RNA for large-scale expression analysis using microarrays.

DNA microarrays can survey virtually the entire expressed genome. A small amount of high quality RNA from tumour
(or non-tumour) tissue is labelled and hybridized on the surface of a chip, which is composed of spotted cDNA clones or
probes spotted or synthesized on the surface of the chip (oligonucleotide arrays), providing a relatively reproducible and
affordable way to analyse thousands of genes simultaneously (see figure). The availability of high quality, high-density
microarrays, coupled with improved methods for RNA extraction, preservation and labelling, have reduced many of the
inherent technical challenges in microarray studies. The primary hurdles now lie in the interpretation, rather than the
acquisition, of the data.

Interpretation of DNA-microarray data is challenging because of its potential for noise and because of the complexity
involved in analysing a data matrix of thousands of elements (typically over 40,000 transcripts in hundreds of tumours).
First, the data are normalized so that gene-expression profiles can be compared between samples (individual chips). Then
genes for which expression does not vary meaningfully throughout the experiment, but which can confuse data
interpretation (the ‘noise’), are filtered out. To find meaningful patterns, computational methods are used, which might
help to define relevant groups of tumours and/or genes. Hierarchical clustering can be used to identify groups of tumours
or genes with similar global gene-expression profiles. These transcriptionally defined groups can then be probed for
correlations with biological, histological or survival-associated distinctions. This type of analysis, in which groups are
defined entirely on the basis of gene-expression profiles without reference to tumour type or grade, is considered to be
‘unsupervised’. Alternatively, it is possible to identify groups of genes for which expression correlates with a biological,
histological or survival-associated parameter (‘supervised analysis’)101. Supervised and unsupervised analyses provide
different and often complementary types of information, so most microarray studies use combinations of these
approaches. Unsupervised analysis provides global portraits about the predominant grouping of the data, but data can be
grouped in many ways and the predominant grouping might not be the most biologically relevant structure. Supervised
analysis, by identifying groups of genes that correlate with a relevant parameter, can provide relevant lists of differentially
expressed genes that might highlight important biological differences.
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therapies will require the detection of relevant molecu-
lar subsets and biomarkers of these subsets that can
guide appropriate patient selection. DNA microarrays
(BOX 1), by virtue of their ability to detect global snap-
shots of transcriptional changes that provide a ‘readout’
of multiple upstream pathway alterations, might pro-
vide an important new tool for predictive molecular
diagnostics.

Detecting meaningful genomic signatures. The first
generation of DNA-microarray studies in human cancer
focused on detecting differences in gene-expression pro-
files between tumours of different types and grades. The
result was clear: tumours that arise from cells of different
origin and that show different grades of aggressiveness
have distinctive global transcriptional signatures37–42.
The formation of cytoskeletal and nuclear structures
and the assembly of complex architectural tissue pat-
terns requires expression of specific proteins — which
is largely a function of gene transcription. A similar
principle applies when pathologists use morphological
assessment as a reflection of the underlying cell bio-
logy43–47. That DNA microarrays can be used to recapit-
ulate well-known distinctions in tumour type indicates
that gene-expression profiles that are detected by
genomic analysis will be biologically relevant.

Detecting global transcriptional differences between
tumours that look different is reassuring, but it might
not be clinically useful. Pathologists are already skilled at
distinguishing tumours of different types and grades.
The value that is added by genomic analysis is likely to
arise from the identification of previously unrecognized,
clinically relevant molecular subsets and the develop-
ment of predictive profiles and specific biomarkers that
will guide therapy. Furthermore, the discovery capabili-
ties of DNA microarrays could potentially yield new
therapeutic targets. For a variety of cancers, including
leukaemias, lymphomas and epithelial cancers, DNA
microarrays have enabled detection of patient subsets
that differ significantly in survival, findings which could
not be detected by traditional pathological examina-
tion48–56. These data indicate that DNA microarrays will
provide a powerful tool for the molecular dissection of
clinically relevant tumour subsets.

It is important to recognize that differential expres-
sion of genes does not necessarily imply causality and is
only a first step towards target identification. Potentially
important therapeutic targets might be differentially
expressed at the protein but not the RNA level, so that
they might not be detected by DNA-microarray analysis.
The activation state of some proteins might also be
more important than their expression level for determin-
ing their suitability as a target. This point is highlighted
by the observation that, in patients with non-small-cell
lung cancer, activating mutations in the kinase domain
of the epidermal growth factor receptor (EGFR) are
strongly associated with an enhanced clinical response
to the EGFR inhibitor gefitinib57,58. Therefore, for the
purpose of target identification, DNA microarrays
provide an important first step that must be followed by
extensive functional analyses.

Targeting specific pathways. Why are predictive molecu-
lar diagnostics so important? Largely, this is a function 
of new and improved therapeutic options. Radiation 
and cytotoxic chemotherapy, the standard forms of
traditional cancer treatment, gain their therapeutic
advantage predominantly from the increased susceptibil-
ity to treatment of rapidly dividing tumour cells relative
to non-neoplastic cells. However, there is also consider-
able damage to rapidly proliferating non-neoplastic cells
such as bone marrow and gastrointestinal epithelium.
New approaches are being developed to specifically
target proteins or pathways that are altered in tumour
cells, thereby potentially providing more effective and
less toxic therapies. These new pathway inhibitors, alone
or in synergistic combination with other pathway
inhibitors and/or traditional chemotherapeutic agents,
are likely to become standard therapy22.

The high frequency of signalling-pathway alterations
in brain tumours, such as chronic phosphoinositide 
3-kinase pathway activation in malignant gliomas and
chronic SHH signalling in medulloblastomas, enables
identification of potential therapeutic targets for small-
molecule inhibitors22–24. High-throughput screens of
small-molecule inhibitors have generated many path-
way/oncogene-specific drugs that could potentially be
used for the treatment of patients with cancer. However,
as promising as these inhibitors are, they are likely to fail
if they are not directed to the right patients. Importantly,
traditional pathological examination is unlikely to pro-
vide sufficient insight into the underlying molecular
alterations that might guide the selection of patients for
these molecularly targeted therapies. Morphologically
identical tumours can be distinct in their mutational pat-
terns, signalling-pathway alterations and gene-expression
profiles, and, most importantly, in their response to a
range of therapies32. Therefore, new predictive molecular
diagnostics need to be developed and integrated with
drug development and clinical-trial design.

Early experience of pathway inhibitors in clinical
trials has highlighted the importance of molecular
diagnostics. The success story for targeted therapy in
clinical trials comes from a specific tumour type —
chronic myelogeneous leukaemia (CML) — in which
the target (the constitutively active BCR–ABL (break-
point cluster region–Abelson murine leukaemia viral
oncogene homologue) kinase fusion protein) is nearly
always expressed. The ABL-kinase inhibitor imatinib
mesylate (Gleveec (STI-571), Novartis) promotes
remission in up to 95% of patients with CML33,34. For
patients with CML , the morphological diagnosis indi-
cates the presence of the molecular target (the BCR–ABL
fusion protein). However, most solid tumours, including
brain tumours, are not like CML. The molecular target
might be present in only a relatively small subset of
morphologically identical tumours. This unrecognized
molecular heterogeneity with regard to the drug target is
likely to complicate clinical trials35. Furthermore, multiple
molecular lesions can collaborate to activate pathways in
such a way that targeting a specific molecule might be
ineffective if there is a downstream mutation that also
activates that pathway36. Rational application of specific
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occurrence), and p53–/– mice treated with cyclin-
dependent kinase (CDK) inhibitors (which cause a 
relatively low frequency of medulloblastomas). The
gene-expression pattern across medulloblastomas was
similar regardless of the genetic background in which
they formed15. The global transcriptional pattern of
medulloblastomas was similar to that of the developing
cerebellum, but not the mature cerebellum, which 
supports the concept that medulloblastomas might
arise from immature cerebellar precursor cells such as
the external granule-cell layer.

To identify downstream genes that might be involved
in medulloblastoma development in the background
of deregulated SHH activity, Oliver et al. applied DNA-
microarray analysis to cerebellar granule-cell precursors
isolated from wild-type or PTC1+/– mice62. They identi-
fied a set of SHH transcriptional targets, including cyclin
D1 and neuroblastoma Myc-related oncogene (NMYC),
the expression of which has been implicated in medullo-
blastoma development and progression. Taken together,
these studies further highlight the role of deregulated
SHH signalling in neural precursor cells during medullo-
blastoma formation. Importantly, these data are very
much in line with the gene-expression profiles that have
been detected in patient samples59.

Gliomas. Low-grade astrocytomas, oligodendrogliomas
and glioblastomas have distinctive global gene-expres-
sion profiles, which are clearly separable from each
other and from the profiles of normal brain tissue 
(FIG. 2)63–68. Furthermore, these tumour subtypes can be
accurately distinguished from each other by a relatively
small number of genes, which are heavily weighted
towards genes encoding proteins that are involved in
such crucial processes as cell proliferation, proteosomal
function, energy metabolism and signal transduction63.
Using a similar approach, Khatua et al. observed 
elevated expression of components of the EGFR–
FKBP12–HIF2α (EGFR–FK506 binding protein
1A–hypoxia-inducible factor 2, α subunit) pathway 
in high-grade childhood astrocytomas relative to
low-grade childhood astrocytomas69. So, differences 
in gene-expression patterns might help in the develop-
ment of new therapeutic targets. But can DNA micro-
arrays provide insights into diagnostically challenging
gliomas, and can they detect subsets of morphologically
identical tumours? Several recent studies shed light on
these questions.

The pathological distinction between glioblastoma
and anaplastic oligodendroglioma is an important one:
the prognosis for glioblastoma patients is substantially
worse, and the treatment options are different. For 
‘classic’ examples of each tumour, the distinction is not
difficult. However, many malignant gliomas are more
challenging. Because the distinction is purely morpho-
logical, a patient’s diagnosis is largely the subjective
assessment of the pathologist based on relatively slim
data. To determine whether gene-expression profiles
could accurately classify these tumours, Nutt and 
colleagues performed DNA-microarray analysis70. They
compared the gene-expression patterns of tumours that

Molecular subsets of brain tumours
Medulloblastomas. Medulloblastomas have distinctive
global gene-expression profiles that readily distinguish
them from some morphological mimics, including
supratentorial primitive neuroectodermal tumours
(which look exactly like medulloblastomas but arise in
the cerebral hemispheres instead of the cerebellum) and
atypical teratoid/rhabdoid tumours, as well as malignant
gliomas59. There is also evidence for molecular subsets
of medulloblastomas. The transcriptional pattern 
of DESMOPLASTIC medulloblastomas (a common variant of
medulloblastoma) differs from classic medullo-
blastomas, particularly in the elevated expression of
several components of the SHH signalling pathway,
which supports a role for deregulated SHH signalling in
these tumours59.

DNA microarrays can also detect molecular subsets
of medulloblastoma cases that differ in terms of patient
survival. Complementary DNA (cDNA)-microarray
analysis of 60 medulloblastoma samples that were
taken before treatment yielded a class-predictor model
composed of as few as eight genes that could accurately
predict the survival of the patients with medullo-
blastoma59. Therefore, the gene-expression profiles
contained vital prognostic information that could
potentially be detected and captured in models incor-
porating small numbers of genes for clinical screening.
For medulloblastoma, patients have traditionally been
stratified into ‘average-risk’ or ‘high-risk’ groups,
largely on the basis of age, extent of post-surgical
residual disease and metastasis. Pomeroy and col-
leagues demonstrated that the gene-expression data
could predict patient outcome independently of these
clinical variables60.

Taking a different approach to the problem, DNA-
microarray analysis was used to identify gene-expres-
sion differences between metastatic and non-metastatic
medulloblastomas. A relatively small number of genes
(85) could accurately classify a sample as being
metastatic or non-metastatic61. Platelet-derived growth
factor receptor α (PDGFRα) was one of the genes that
correlated most strongly with metastasis at both the
mRNA and protein level, and PDGFR signalling 
promoted medulloblastoma adhesion and CHEMOTAXIS

in a MAPK1/2-dependent fashion in assays that were
carried out in vitro. These results imply a functional
role for the PDGFR-signalling pathway in medullo-
blastoma invasion and indicate its potential as a 
biomarker of aggressiveness61.

In addition to their value for analysis of patient 
samples, DNA microarrays can also provide important
insights into disease when they are applied to experimen-
tal models that can be genetically or pharmacologically
manipulated. Lee et al. analysed the gene-expression pro-
files of medulloblastomas that were derived from a set of
genetically defined mouse crosses15. They compared the
transcriptional profiles of medulloblastomas that were
derived from PTC1+/– (patched homologue 1+/–) mice
(15% medulloblastoma occurrence), PTC+/– ;p53–/– mice
(100% medulloblastoma occurrence), LIG4–/– (DNA 
ligase IV–/–); p53–/– mice (100% medulloblastoma

DESMOPLASTIC

A term that refers to the growth
of dense fibrous tissue around a
tumour.

cDNA 

Complementary DNA that is
produced from an RNA
template by an RNA-dependent
DNA polymerase.

CHEMOTAXIS 

The movement of cells in
response to a chemical gradient
that is provided by chemotactic
agents.
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of specific immunohistochemical or reverse transcrip-
tase–polymerase chain reaction (RT-PCR) markers that
could be translated into clinical practice. However, this
study points to an issue of greater importance: tran-
scriptional information contains more data about out-
come than does pathological examination, and this
could potentially be used to develop a predictive molec-
ulardiagnostic procedure.

were clearly and easily pathologically classified as either
‘classic’ glioblastomas or ‘classic’ anaplastic oligo-
dendrogliomas, and developed a gene-expression-based
classifier. When they applied this classifier to a set of
diagnostically challenging specimens, they found that
gene-expression profiling was a more reliable method of
predicting survival than pathological assessment.
Practically, this analysis might help in the development

RT-PCR

Reverse
transcriptase–polymerase chain
reaction (PCR) — a reaction in
which messenger RNA is
converted into DNA (reverse
transcription), which is then
amplified by PCR.
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Figure 2 | DNA-microarray analyses can identify relevant clinical subsets of gliomas. a and b show that different subtypes of
gliomas have distinct gene-expression profiles. a | The gene-expression patterns of gliomas of different types and grades.
Multidimensional scaling on the basis of expression of 12,555 genes shows that gliomas of different histological type and grade have
distinct transcriptional profiles. b | Hierarchical clustering shows that gliomas of different type and grade can be readily distinguished
from each other and from normal brain by a relatively small number of genes (170 genes). Figure adapted, with permission, from 
REF. 63  (2003) Macmillan Magazines Ltd. c and d show identification of molecular subsets of microscopically identical
glioblastomas. c | Hierarchical clustering identifies three molecular subsets of primary glioblastomas on the basis of the differential
expression of 90 genes. One subset is associated with epidermal growth factor receptor (EGFR) overexpression (pink), one is
associated with overexpression of a contiguous set of genes on chromosome 12q13-15 (blue), and the third lacks either alteration. 
d | Multidimensional scaling shows that these subsets have distinct global transcriptional profiles. Figure adapted, with permission
from REF. 71  (2003) Macmillan Magazines Ltd. e and f show the detection of clinically relevant, previously undetected subsets of
patients with high-grade gliomas that have significantly different survival times. e | Hierarchical clustering of 85 high-grade glioma
samples on the basis of the expression of 595 genes that are highly differentially expressed in patients with relatively good survival
times versus those with shorter survival times72. Four subsets of patients are detected. f | Kaplan–Meier survival analysis shows that
these genes can identify the subset of patients who are most likely to have prolonged survival times (cluster 1A, black). 
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data in these cell lines indicates that it will be possible to
develop DNA-microarray-based approaches to predict-
ing chemosensitivity73–76. The clinical application of this
strategy will depend on the design of well-coordinated
clinical trials, in which predictors that have been devel-
oped in model systems and in retrospective analyses of
patient samples can then be tested in prospective clinical
trials. Several promising studies indicate that this will be
possible; for example, retrospective analyses of gene-
expression profiles that correlate with the response to
chemotherapy for a few types of cancer (non-brain
tumours) have begun to emerge77,78.

DNA microarrays might also prove to be a powerful
tool for the rational application of combination therapy.
By comparing pre- and post-treatment gene-expression
profiles in patients with acute lymphocytic leukaemia
who were treated with two different chemotherapies
(methotrexate and mercaptopurine), alone or in com-
bination, Cheok and colleagues showed that the effects
of single-agent versus combination therapy on gene
expression were largely non-overlapping79. That is,
combination therapy did not result in an additive gene-
expression response; it induced a profoundly different
transcriptional response in comparison to either agent
when administered alone. These data warrant a re-
consideration of the potential effects of combination
chemotherapy, and also a reinterpretation as to the
mechanism of its efficacy.

As predictive molecular diagnostics are being devel-
oped, new anti-cancer compounds are being screened.
Chemical genomics, in which chemical libraries are
tested for the ability to modulate cellular states, is 
central to this process. These screens usually rely on a
functional readout; that is, the ability of a chemical to
induce growth arrest or differentiation. Stegmaier et al.
showed that DNA-microarray analysis can be used 
to identify a small set of genes that could serve as a 
surrogate marker of the desired cellular state (differen-
tiation)80. This small set of genes could then serve as a
molecular diagnostic tool that could easily be assayed
with an RT-PCR reaction, thereby facilitating the func-
tional analysis of compounds. This approach, which is
known as gene-expression-based high-throughput
screening, is likely to have a substantial impact on the
screening of chemical libraries and the development of
new drugs80.

A new concept for biomarkers. The use of DNA micro-
arrays is set to revolutionize the development and use of
tumour biomarkers. The few brain tumour biomarkers
that are currently available include chromosomal loss of
1p and 19q for oligodendrogliomas81, and neurotrophic
tyrosine kinase, receptor, type 3 (TRKC), NMYC,
CMYC (the related MYC family member) and v-erb-b2
erythroblastic leukaemia viral oncogene homologue 2
(ErbB2) for medulloblastoma82. Analysis of the associa-
tion between any of these single biomarkers and response
to therapy requires large numbers of patients to obtain
sufficient statistical power.A single biomarker has limited
predictive power if many other genes or proteins are
important for determining outcome. By contrast, DNA

As well as helping the classification of diagnostically
challenging tumours, DNA microarrays might also
enable the detection of molecular subsets within ‘classic’
pathological types. One recent study used global gene-
expression analysis to uncover new molecular subsets of
morphologically identical tumours71. EGFR expression
is common in primary glioblastomas (those that arise
de novo as high-grade tumours), detected in approxi-
mately two-thirds of cases. Until recently it has been
unclear whether EGFR-expressing glioblastomas are
a distinct molecular subset, and the biological and tran-
scriptional consequences of EGFR overexpression 
in glioblastomas have not been clarified. To address 
this issue, primary glioblastomas were stratified as 
being either EGFR protein-expressing or EGFR protein-
negative, and differences in the transcriptional profiles
were analysed. EGFR-expressing glioblastomas had a
globally distinctive pattern of gene expression compared
with non-EGFR-expressing primary glioblastomas,
indicating that they are a biologically relevant subset.
Furthermore, a relatively small number of genes could
be used to distinguish between EGFR-expressing and
EGFR-negative primary glioblastomas, and this list of
genes was highly enriched for signalling molecules,
many of which could potentially provide therapeutic
targets. Not surprisingly, the EGFR-negative primary
glioblastomas were not a uniform subclass: at least two
further subsets were detected, including one in which a
set of contiguous genes on chromosome 12q13-15 was
overexpressed, which is consistent with a chromosomal
amplification. These data indicate that patterns of gene
expression can uncover biologically relevant molecular
subsets of morphologically identical glioblastomas 
(FIG. 2)71. The short survival time of patients with
glioblastoma (12 month median survival) has made the
detection of differences in patient survival difficult.

A recent large-scale DNA-microarray analysis by
Freije et al. showed that gene-expression-based grouping
of tumours is a more powerful predictor of survival than
pathological type, grade or age72. The authors con-
structed a gene-expression-based classifier that detected
distinct molecular subsets of morphologically identical
gliomas, including glioblastomas, that differed signifi-
cantly in terms of patient survival (FIG. 2). This classifier
was validated on an additional external and independent
dataset from another institution70,72. The study shows
that DNA-microarray analysis can identify previously
unrecognized, clinically relevant subsets of patients with
glioblastoma in a robust and reproducible fashion.

DNA microarrays to predict therapeutic response
Genomic correlates of chemosensitivity. That DNA
microarrays can be used to detect molecular subsets that
differ in terms of survival time indicates that it will soon
be possible to develop gene-based predictors of thera-
peutic responses. Many model-system studies are already
addressing this question. The NCI60, a panel of cancer
cell lines that is maintained by the National Cancer
Institute, has been screened for chemosensitivity to 
a large number of anti-cancer agents. Overlaying gene-
expression-profiling data on the functional-response
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allow the projection of potential pathway alterations
on the basis of gene-expression data. Gene-ontology
databases, which allow for dynamic mapping of gene-
expression data into potential pathways on the basis of
their functional annotation and known molecular inter-
actions, are central to this effort91,92. In addition, inte-
grated pathway-analysis tools such as Ingenuity Pathway
Analysis and Cytoscape have been developed, which can
integrate gene-expression data with other molecular
databases — such as protein-interaction databases — to
facilitate the development of new and more complete
pathway maps91,93. As well as providing convenient ways
to analyse existing data, there is potential for important
information to be discovered as a consequence of
the iterative nature of this process. Empirical DNA-
microarray data from tissue samples or experimental
models can be placed in the context of present knowl-
edge about pathways, and new and expanded pathway
connections or specific gene–gene interactions can
potentially be inferred, which can be functionally
analysed and used to build on the existing pathway
knowledge base.

Refining pathway maps might have important impli-
cations for many areas of neuroscience, not just brain
cancer. Cancer cells do not ‘invent’ new pathways; they
use pre-existing pathways in different ways or they com-
bine components of these pathways in a new fashion. By
mapping, expanding and refining pathway maps in
brain cancer, DNA-microarray studies might provide
insight into the connectivity of these pathways in the
developing and normally functioning brain. One only
needs to consider how much has been learned about
normal brain function by analysing signalling pathways
in a relatively small number of cancer cell lines, such as
the rat pheochromocytoma line PC12 (REFS 94,95), to
recognize the potential value of these studies.

Network analysis. In addition to analysing pathways 
by integrating gene-expression data with functional-
annotation databases, it will be important to begin to
analyse gene-expression networks without any a priori
assumptions. This is particularly important if in the
diseased state the genes interact with each other in 
different pathways or networks than they do in health.
The last few years have seen a substantial growth in the
recognition of the importance of networks and the
development of quantitative tools for analysing them2.
Complex systems, which range from non-biological to
cellular networks, adhere to universal organizational
principles. Modularity, in which cellular functions are
carried out by groups of interacting molecules, is an
important feature of these networks2,96,97. For example,
modularity can be detected in the metabolic protein-
interaction networks of many organisms97. It can 
also be detected at the level of gene-expression net-
works87,88,98. Clusters of genes with related functions
show correlated expression patterns87,88. Furthermore,
modules of interconnected genes with shared biological
functions are conserved across the gene-expression net-
works of various species. High-level self-organization
can also be detected in the gene-expression networks of

microarrays can be used to detect groups of genes that,
in the aggregate, contain significantly more predictive
information than does any individual biomarker. The
fact that an eight-gene model can be used to predict sur-
vival in medulloblastoma59, and that a six-gene model
can be used to predict the outcome in patients with
breast cancer48, indicates that chemotherapy-response
predictors can be modelled using relatively small panels
of genes that can be screened by RT-PCR or immuno-
histochemistry. This will allow more robust conclusions
to be drawn from a series of much smaller, more stream-
lined studies. Early data indicate that this approach, as
well as being easier to carry out and more economical,
will yield better methods of patient stratification for
therapy 83. By carefully analysing toxicities, it might be
possible to use the same array data to identify predictors
of adverse therapeutic responses.

DNA microarrays might also have an important role
in the identification of novel serum biomarkers and mol-
ecular-imaging probes. Efficient biophysical-separation
methods for detecting differentially expressed mRNAs
that encode secreted and membrane-associated gene
products have been developed84, and bioinformatic
approaches for detecting secreted proteins can also be
applied to DNA-microarray data. This approach has
already led to the identification of the secreted glyco-
protein YKL40 as a potential biomarker for glioblas-
toma85. DNA microarrays could probably also be used
in the identification of a new generation of molecular-
imaging probes86, which will be useful for diagnosis and
for monitoring responses to therapy. For example,
DNA-microarray studies can identify genes, the expres-
sion of which might be a surrogate marker of pathway
activation. In vivo imaging using such a probe would
allow direct, repeatable and quantitative non-invasive
monitoring of the effect of targeted pathway inhibitors
in patients.

Using microarrays to analyse pathways
Recently, there has been an increasing recognition that
detecting gene-expression patterns that are conserved
across species can highlight key functional networks87,88,
and identifying gene-expression patterns that are com-
mon to many types of cancer (and/or other biological
processes) might also be enlightening. Recent studies
have identified a stereotyped fibroblast serum-response
gene-expression pattern that is shared by wound healing
and many types of cancer, and which is a predictor of
metastases and short patient survival89. Similarly,
Whitfield et al. identified a cell-cycle-specific pattern
of gene co-expression in HeLa cervical cancer cells in
culture, which is detected in various cancers but not in
normal proliferative tissues90. Studies in which gene-
expression signatures are compared across biological
proceses and/or tumour types should yield important
new insights into gene expression in cancer.

Assembling gene lists into pathways. Genes do not act as
individual units, they collaborate in overlapping path-
ways, the deregulation of which is a hallmark of cancer.
New bioinformatics tools are being developed that will
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methods across array platforms will be vital for the
integrity and translational value of DNA-microarray
studies. For example, the recent work of Freije et al.
showed that a DNA-microarray-based survival 
predictor was robust across sample sets, institutions
and DNA-microarray platforms70,72.

Arrays for everyone, or marker subsets? If further analy-
sis continues to support the usefulness of DNA
microarrays as molecular diagnostics of response 
and outcome, should each cancer patient receive a
DNA-microarray analysis of their tumour? Universal
DNA-microarray screening of cancer patients would
require standardized laboratories with standardized
procedures for performance and analysis of the gene-
expression data100. Alternatively, would it be better to
distil these gene-expression differences into small
genetic marker sets that remain highly predictive, but
which can be easily assayed? Furthermore, will the
screening be carried out by quantitative RT-PCR or
immunohistochemistry? Can we develop methods for
carrying out these assays such as RT-PCR reactions on
routinely processed paraffin-embedded biopsies?
Clearly, we have much work to do.

Towards a personalized medicine. At the beginning 
of this review, we described the shift away from popu-
lation risk assessment and empirical treatment of
patients with brain tumours to one of predictive indi-
vidualized care based on molecular classification and
targeted therapy25. The tools for this are already close
at hand. It is now possible to imagine a day in the 
not-too-distant future when serum biomarkers and
molecular imaging probes that are identified by DNA
microarrays will be used for screening or early detec-
tion. Tumours will undergo global DNA-microarray
analysis (or analysis of a subset of markers) to identify
pathway alterations that point to the most beneficial
therapy or combination of therapies (FIG. 3).
Responses to therapy will be quantitatively and repro-
ducibly monitored in a minimally invasive fashion
using molecular-imaging probes and/or serum 
biomarkers to detect the biological effect of drugs on
their intended target gene or pathway. In parallel, new
therapies will emerge as DNA microarrays and other
global genomic and proteomic technologies probe
networks and pathways for their Achilles’ heel. New
molecular diagnostics will emerge that combine
global gene-expression analysis with advances in 
activation-specific antibodies20, proteomic analysis26

and other genomic techniques to look at polymor-
phisms, chromosomal gains and losses, point muta-
tions and methylation patterns28–30. The iterative
nature of this discovery process and the ability to test
these new ‘biomarkers’ in smaller and more stream-
lined clinical trials will continue to refine molecular
diagnostics and will also provide insights into the
underlying biology of brain cancer. In the process we
might provide new hope for brain cancer patients and
shed more light on our understanding of normal
brain development and function.

cancer cells99. Analysing the network properties of
gene-expression data might reveal the organizational
pattern of gene expression in cancer, which might, in
turn, help us to identify new potential drug targets.

Moving into the clinic: challenges ahead
Reproducibility and data sharing. The recent genera-
tion of commercially available DNA microarrays are
proving to be technically robust and reliable.
However, subtle differences in sample preparation and
RNA extraction and labelling can have a profound
impact on the gene-expression data. More impor-
tantly, the bioinformatics strategies that are used to
analyse the data are far from uniform. Therefore,
reproducibility between laboratories and DNA-
microarray platforms is an important issue. The key
to addressing this problem is the public availability of
raw data. Groups that identify clinically relevant gene-
expression signatures need to be able to validate them
on independent data sets from other institutions.
Furthermore, the validity of gene-expression patterns
for predicting the outcome or response to therapy
needs to be independent of the array platform that is
used for analysis. Cooperation between investigators,
larger validation studies and improved data-analysis
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Figure 3 | Prospects for integrating genomic analysis of brain tumours with clinical-
trial development. a | Currently, patient inclusion in clinical trials is highly reliant on
histological classification, which provides only limited insight into the molecular heterogeneity
of brain tumours. Therefore, potentially effective treatments that might be of benefit to
specific patient subsets (which are not detectable by histology) will not be recognized. 
b | With the integration of genomic analyses such as microarrays, heterogeneous groups
can be identified to allow patient stratification. In addition, the detection and characterization
of the molecular heterogeneity provides direct and indirect insights into probable targets for
inhibition therapy. These inhibitors can be used more efficiently by targeting them to groups
of patients whose tumours are more likely to respond to the specific therapies. This
approach might also identify biomarkers that can then be used to stratify patients for
targeted therapy.
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