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ABSTRACT

Motivation: Microarray gene expression and cross-linking chromatin

immunoprecipitation data contain voluminous information that can

help the identification of transcriptional regulatory networks at the full

genome scale. Such high-throughput data are noisy however. In

contrast, from the biomedical literature, we can find many evidenced

transcription factor (TF)–target gene binding relationships that have

beenelucidated at themolecular level. But such sporadically generated

knowledge only offers glimpses on limited patches of the network.

How to incorporate this valuable knowledge resource to build more

reliable network models remains a question.

Results: We present a modified factor analysis approach. Our algo-

rithm starts with the evidenced TF–gene linkages. It iterates between

the network configuration estimation step and the connection strength

estimation step, using the high-throughput data, till convergence.

We report two comprehensive regulatory networks obtained for

Saccharomyces cerevisiae, one under the normal growth condition

and the other under the environmental stress condition.

Contact: kcli@stat.ucla.edu

Supplementary information: http://kiefer.stat.ucla.edu/lap2/

download/bti656_supplement.pdf

INTRODUCTION

Transcription network modeling is a major step towards deciphering

the cellular regulation system. It involves two major tasks:

(1) finding the target genes for each transcription factor (TF),

and (2) correlating each TF’s activity to its target transcripts as

the condition varies. The first task specifies the network configura-

tion. Several methods are available. The computational approach

includes the inference of TF binding targets by drawing information

from TF binding motifs (Qiu, 2003; Pritsker et al., 2004), and from

gene-expression dynamics (Pournara and Wernisch, 2004; Qian

et al., 2003; Rung et al., 2002; Segal et al., 2003; Zhu et al.,
2002). A more direct approach is the genome-wide location ana-

lysis, or cross-linking chromatin immunoprecipitation (ChIP),

which profiles each TF for its binding sites over the entire genome

(Harbison et al., 2004; Lee et al., 2002). Combining ChIP data with

microarray gene-expression data can give more interpretable net-

work connectivity estimates (Bar-Joseph et al., 2003; Xu et al.,
2004; Zhou et al., 2005). It also serves the purpose of elucidating

the relationship between a TF’s activity and the abundance of its

target transcripts. Among many related works, of our special interest

is the Network Component Analysis (NCA) model by Liao et al.

(2003), which treats TF activities as latent variables. We shall

incorporate this idea in developing our method.

Although ChIP and gene-expression data are invaluable for build-

ing the transcription network at the genome scale, they are both

subject to high level noises. To minimize the noise interference in

network construction, instead of taking a de novo approach which

would require the simultaneous estimation of a tall magnitude of

parameters, our idea is to use a set of highly reliable connections as

the skeleton for network building. For yeast, more than 1000 evid-

enced TF–gene relationships exist in the literature and they have

been organized into knowledgebase available from the internet

(Lee et al., 2002; Wingender et al., 2001). This source of informa-

tion provides an excellent starting point for network construction.

We present an algorithm that integrates ChIP data, microarray

data and prior biological knowledge to obtain the transcription

network. Our approach has several features. First, it utilizes the

known TF–gene relationships. Second, it takes into account the

combinatorial nature of transcription regulation. Third, it provides

an estimate of TF activity, which can be used to further study the

transcriptional regulation of the TFs themselves. Fourth, it takes

into account the condition specificity in modeling the TF–target

gene binding relationship.

METHODS

The two-stage constrained space factor analysis model

To relate TF–gene linkages with transcript abundance, we adopt the factor

analysis model (Morrison, 1990), which takes the form of X ¼ LY + E. It

is well-known that without any constraint on the loading matrix L, the model

is not identifiable. In practice, rotation on the loading matrix is taken to

yield interpretable results. Quite often, this reduces the number of non-zero

loadings (Morrison, 1990).

Suppose there are N genes, K TFs and J gene-expression conditions.

We represent the configuration of a transcription regulatory network by a

sparse connection matrix CN·K ¼ [c1, c2, . . . , cK] between TFs and genes.

Each column vector ck is composed of 1 and 0s, indicating the binding (1)

and non-binding (0) relationship of the k-th TF to each gene.

To apply factor analysis model, we take X to be the microarray gene-

expression profile matrix GN· J, Y to be the TF activity profile matrix TK· J,

L to be the regulation strength matrix BN·K ¼ [b1, b2, . . . , bK]. We rewrite

the model as

GN·J ¼ BN·KTK· J þ EN· J : ð1Þ

With constraints that bk lies in the subspace confined by the projection matrix

diag(ck)

diag ckð Þbk ¼ bk‚ k ¼ 1‚2‚ . . . ‚K‚ ð2Þ�To whom correspondence should be addressed.
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which means that for any (i, k) combination, bi,k can be non-zero only

when ci,k ¼ 1.

In our analysis, the expression profiles are already in log ratios. If the

network configuration matrix C were pre-specified, then model (1) would be

reduced to the NCA model proposed by Liao et al. (2003), wherein condi-

tions can be found with respect to parameter identification. But the more

challenging task for us is how to estimate C.

To guide the estimation of C, we use the condition that elements in the

configuration matrix C be bounded by the corresponding elements from two

matrices CMIN and CMAX:

cMIN i‚ k � ci‚ k � cMAX i‚ k , 8i‚k: ð3Þ

Note that elements of the connection matrices can only take values 0 and 1,

thus for each (i, k) combination, one of the inequalities must be equality.

The lower-bound CMIN represents the network configuration matrix for the

higher-confidence set of TF–gene relationships. The upper-bound config-

uration matrix CMAX is composed of linkages from both the higher- and

lower-confidence sets (see Data source section).

We start with C ¼ CMIN. After stabilizing the initial estimates of B and T

(see next section), we update the configuration by adding a new linkage that

best agrees with current B and T estimates. We then update B and T. This

procedure is repeated many times till convergence.

The algorithm

We normalize each gene-expression profile to bring the mean to zero and

standard deviation to one. We also normalize estimated TF activity profile in

each iteration of our algorithm.

Step 1. Initial estimation of TF activity profiles T from higher-confidence

set. Set C ¼ CMIN. The initial estimate of the activity profile for a TF is

constructed by the consensus of the expression profiles for those genes

targeted by this TF, using the leading component of a weighted PCA

(Morrison, 1990).

Step 2. Estimation of B and T. After the initial estimate of T is obtained, an

alternating least-square procedure (Gifi, 1990) is applied to minimize the

sum of square error kG � BTk2.

(1) Estimating B. Fix the T matrix. For each row vector gi in matrix G,

find all k�s such that ci,k� ¼ 1. Regress gi against the correspond-

ing tk�s. Replace the bi,k�s with the regression coefficients. Here we

use ridge regression to deal with the stability issue arising from

the collinearity between the regressor variables (Faraway, 2004).

(2) Estimating T. Fix the B matrix, regress each column of matrix G,

gj against B. Replace the corresponding column of matrix T, tj with

the estimated coefficients. The two steps are iterated until the sum of

squared change of T is smaller than a cutoff value.

Step 3. Adding new TF–gene relations. The algorithm searches through all

TF–gene pairs allowed by CMAX � C to find a pair that best agrees with the

current B and T estimates. Because all gene-expression profiles and TF

activity profiles are normalized, this is done efficiently by finding the highest

absolute covariance between the residual (unexplained part) of an expression

profile and a TF activity profile.

Define matrix D ¼ CMAX � C. First we find the row-wise covariance

matrix V between the residual expression matrix R ¼ G � BT and the TF

activity matrix T, by vi,k ¼ cov(ri, tk). We then find the pair {i�, k�} ¼
arg maxi,k(|vi,k| · di,k). We assign ci�,k� ¼ 1 and bi�,k� = cov(ri�,tk�). Then the

estimates of B and T are stabilized as described earlier.

We iterate between Steps 2 and 3. In each iteration, we record the total

reduction of residual sum of squares (RSS) kG � BTk2. When the average

reduction in RSS in the last 10 iterations is less than one-fifth of that of the

initial 10, we consider most of the signals in the lower-confidence set have

been picked up, and terminate the iteration.

Step 4. Fine-tuning of TF-gene relations. Once the convergence is

reached, we use T as the final estimate of TF activity profiles. Based on

this estimate, we make an additional effort to fine-tune the network

configuration matrix C, using regression variable selection techniques.

For each gene i, to determine its regulator TFs, we find k�s such that

cMAX i,k� ¼ 1, and consider the multiple linear regression model

gi‚ j ¼
X

k

bi‚ k� tk�‚ j þ ei‚ j‚ ð4Þ

in which the bi,k�s are the coefficients to be determined. The Bayes

Information Criterion (Faraway, 2004) is applied to find the best subset

of regressors. We regress ti against the best subset, then select the regressors

for which the P-value is <10�4. Set the corresponding positions of C to 1.

The data source

The higher-confidence set consists of known gene–TF relationships in the

biomedical literature [see TRANSFAC (Wingender et al., 2001) and the

website of Young’s group (Lee et al., 2002)]. There are a total of 1089

TF–gene relationships, from which we shall construct the matrix CMIN used

in Equation (3).

The lower-confidence set is based on the ChIP dataset (Harbison et al.,

2004). We use all TF–gene pairs that were reported to have P-values <0.05.

The use of this loose cutoff point is to lower the false-negative rate. We shall

combine the lower- and higher-confidence sets and use matrix CMAX to

represent the information.

Two large-scale microarray datasets are used in this study. The cell-cycle

dataset (Spellman et al., 1998) is used for normal growth network estimation.

The stress–response dataset (Gasch et al., 2000) is used for stress-specific

network estimation.

Time-shifted activity–expression correlation

For the cell-cycle data, we further investigate the time-shifting behavior

between a TF’s expression profile and its activity profile. Denote the expres-

sion profile by x¼ (x1, x2, . . . , xM), the activity profile by y¼ (y1, y2, . . . , yM)

and time points by t ¼ (t1, t2, . . . , tM). Let Dt be the amount of time-shifting

in minutes, which takes an integer value between 0 and 20. We first estimate

the correlation between x(t) and y(t + Dt). We then find the delayed time Dt
that maximizes the correlation in absolute value. We estimate y(t + Dt)
by fitting y with a cubic spline.

RESULTS

Regulatory network under rich-medium

growth condition

Harbinson et al. profiled 203 TFs for their genome-wide DNA

binding sites under rich medium growth condition (Harbison

et al., 2004; Lee et al., 2002). We consider only those TFs that

have evidenced binding targets. To avoid multiple counting of

TF–gene relationships, if a group of TFs (e.g. HAP2/HAP3/

HAP4/HAP5) always operate together as a functional unit accord-

ing to the literature, we will count them as one TF. There are a

total of 99 TFs used in our analysis. Their names and functions

provided by Saccharomyces Genome Database (SGD) (Dwight

et al., 2002) are given in Supporting Table 4.

We start with 891 evidenced relationships and 29 154 lower-

confidence relationships. Using the cell-cycle microarray data by

Spellman et al. (1998), we apply the algorithm as described

in Methods section to reach a final network which has 3846

TF–gene connections. For each TF, we examine the biological

processes that its target genes participate by GO Term Finder of

SGD (Ashburner et al., 2000; Dwight et al., 2002). The list of genes
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regulated by each TF can be found at http://www.stat.ucla.edu/~tyu/

factor/. The over-represented terms are given in Supporting Table 5.

Some TFs are more specialized, whereas others act on a broader

range of cellular processes. The GO slims define broad biological

processes (Ashburner et al., 2000; Dwight et al., 2002). For each

process, we identify TFs that regulate significant numbers of genes

in it (Table 1). We find ABF1, FKH1/2 and INO2/4 to be the leading

factors, each acting on 9 of the 33 processes. ABF1 and INO2/4

mostly act on metabolic and transport processes, whereas FKH1/2

mostly acts on cell cycle-related processes. Other widely influential

factors include cell cycle-related SWI4, SWI6, and metabolism-

related MSN2/4, HAP1, HAP2/3/4/5 and XBP1.

Figure 1 shows the regulatory relationship between TFs. An

arrow points from a TF to another TF if the latter is the target

gene of the former according to the TF–gene network we construc-

ted. Consistent with their biological roles, we find the cell-cycle

regulatory TFs SWI6, SWI4, FKH1/FKH2, ACE2/SWI5, MCM1

and STB1 (diamond nodes, Fig. 1) are linked together. Around

the leading hub in the network, GAT1, we find a sub-network

that involves nitrogen metabolism-related TFs GAT1, DAL80,

DAL81, GZF3, GLN3, and stress-related TFs IXR1, XBP1, YAP1,

RPN4 and HAP1 (square nodes, Fig. 1). Interestingly, the two

regulators of GAT1 expression are cell-cycle TFs ACE2/SWI5

and FKH1/FKH2.

We investigate if the activity profile of a TF is correlated with

its own gene-expression profile subject to a possible time delay.

We consider the alpha-factor data, cdc-15 data and cdc-28 data

separately. The elutriation-synchronized data are excluded from

our analysis because the time interval (every 30 min) used in col-

lecting the mRNA sample is too long. For each TF, we first compute

the activity–expression correlation without time delay. Table 2

lists a total of 17 TFs which have correlation >0.4 in at least

two of the three synchronization experiments. For each of the

remaining TFs, we analyze the time-shifted activity–expression

correlation as described in Methods section. We find 10 TFs show-

ing delayed activity–expression correlation (see Table 3). As an

example, the time-delay pattern for SWI4 is shown in Figure 2.

Both the expression and the activity profiles exhibit cell-cycle

pattern periodicity. The estimated time lag is �10 min (1/6 cycle).

As suggested by one referee, a related issue that can be addressed

by using GO is about the functional homogeneity of transcription

modules. Similar to the distance measure used by Ye and Godzik

(2004) in studying protein domains, we compute the average length

of the shortest GO-path between two genes linked to the same TF.

The results are summarized in Supporting Figure 3. We only find a

marginally significant (P-value 0.0324, one-sided signed rank sum

test) decrease of distance when comparing with TF modules

obtained by using CHIP data alone. Another measure based on

GO-slims yields similar findings (see Supportive Information

Text 1 for more discussion). Note that we have not paid attention

to TF modules defined by a combination of TFs yet. Although

ideally one would expect higher functional homogeneity for

such better-defined modules, this is certainly a more complicated

problem to address.

Regulatory network under stress condition

TF binding to a subset of the regulatory sequences may be depend-

ent on the environmental conditions of the cell. Harbison et al.
(2004) analyzed the genome-wide binding properties of 84 TFs

under multiple stress conditions. Combining this dataset with

the stress–response microarray gene expression data (Gasch et al.,
2000), we shall identify a network underlying the gene-expression

regulation in stress conditions.

In the stress-specific ChIP dataset (Harbison et al., 2004), some

TFs are profiled in multiple conditions. We include a TF–gene

Table 1. TFs that regulate a significant fraction of genes (P-value <0.01) in

each broad biological process as defined by GO slims

Biological process Major TFs

Amino acid and derivative

metabolism

GCN4, CBF1/MET4/MET31, LEU3,

BAS1, PHO2

Carbohydrate metabolism GCR1/GCR2, MSN2/MSN4

Cell budding SWI6, SWI4

Cell cycle FKH1/FKH2, SWI6, RPN4, ACE2/SWI5

Cell homeostasis HAP1, MAC1, SKN7

Cell wall organization

and biogenesis

INO2/INO4, SWI4, FKH1/FKH2,

RLM1, TEC1

Cellular respiration HAP2/HAP3/HAP4/HAP5, HAP1,

RTG1/RTG3

Conjugation STE12

Cytokinesis FKH1/FKH2, ACE2/SWI5, XBP1

Cytoskeleton organization

and biogenesis

ABF1, FKH1/FKH2, SWI4

DNA metabolism SWI6, HIR3, SFL1, UME6

Electron transport HAP1, INO2/INO4

Generation of precursor

metabolites and energy

GCR1/GCR2, HAP2/HAP3/HAP4/HAP5,

INO2/INO4, MSN2/MSN4

Lipid metabolism HAP1, ABF1, INO2/INO4, SWI4

Meiosis UME6, SFL1, FKH1/FKH2, RPN4, SUM1

Membrane organization

and biogenesis

Morphogenesis SFL1

Nuclear organization

and biogenesis

FKH1/FKH2, ABF1

Organelle organization

and biogenesis

FKH1/FKH2, GCR1/GCR2, ADR1

Protein biosynthesis RAP1, ABF1, PDR1, ROX1, CUP9, XBP1,

GZF3, INO2/INO4

Protein catabolism RPN4, REB1, GAT1, ABF1, XBP1,

ADR1, SFL1

Protein modification FKH1/FKH2, PHO2, INO2/INO4,

SWI4, SWI6, REB1

Pseudohyphal growth FKH1/FKH2

Response to stress MSN2/MSN4, HSF1, INO2/INO4,

GLN3, PHO2, XBP1, YAP1

Ribosome biogenesis

and assembly

ABF1, HAP2/HAP3/HAP4/HAP5,

STP1/STP2

RNA metabolism ABF1, STP1/STP2,

HAP2/HAP3/HAP4/HAP5,

MSN2/MSN4

Signal transduction STE12, SKN7

Sporulation SUM1, UME6

Transcription ABF1, PPR1

Transport OAF1, DAL82, MIG1, RIM101, ADR1,

INO2/INO4, XBP1

Vesicle-mediated transport ABF1, GAT1, INO2/INO4, PPR1,

REB1, XBP1

Vitamin metabolism THI2, MAC1
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linkage in the lower-confidence set as long as it is observed in one of

the conditions. Starting with 579 higher-confidence TF–gene rela-

tionships and 29 316 lower-confidence relationships, we apply our

algorithm and obtain a network of 8183 TF–gene connections,

which involve 49 TFs. The list of genes regulated by each TF

can be found at http://www.stat.ucla.edu/~tyu/factor/. For each

TF, we find biological processes that are over-represented by its

targeted genes (see Supporting Table 6).

We further use the regulatory network to study the 868 environ-

mental stress–response (ESR) genes reported by Gasch et al. (2000).

Among the 585 genes repressed in ESR, 98% have connections

in our network, compared with 78% for non-ESR genes. At the

significance level of 10�5, seven TFs are identified as major regu-

lators of these genes. The most prominent among them is RAP1,

which regulates 93 genes. The others are ARG80/ARG81/ARG82

(regulating 56 genes), RCS1 (52 genes), CBF1/MET4/MET31

(46 genes), HSF1 (45 genes), RTG1/RTG3 (43 genes) and GAT1

(42 genes). Among the 283 upregulated genes in ESR, 97% have

connections in our network. At the significance level of 10�5, six

TFs are identified as major regulators of these genes. They are

MSN2/MSN4 (79 genes), PHO2 (32 genes), HAP2/HAP3/HAP4/

HAP5 (26 genes), AFT2 (26 genes), ROX1 (26 genes) and RPH1

(26 genes).

DISCUSSION

We have presented a method to infer the transcriptional regulatory

network at the full genome scale, by integrating information from

microarray gene-expression data, genome-wide location (ChIP)

data and the evidenced TF–target gene relationships in the biomed-

ical literature. Our method is based on a constrained space factor

analysis model, which treats TF activity as hidden variables.

In the analysis of transcriptional regulation, one central theme is

how to describe TF activity. By finding co-regulated gene modules,

some authors implicitly infer building blocks of the network without

modeling the TF activity (Eisen et al., 1998; D’haeseleer et al.,
2000; Ihmels et al., 2002, 2004; Kwon et al., 2003; Toh and

Horimoto, 2002). Studying co-expression dynamics with other

gene-expression levels as indicators of cellular state changes also

by-passes the TF activity modeling issue (Li, 2002; Li et al., 2004).

Fig. 1. The regulatory relationship between TFs under normal growth condition. An arrow points from a TF to another TF if the latter is the target gene of the

former according to the TF–gene network we constructed.
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Some authors tried to connect the TFs’ activity directly with their

gene-expression levels (Qian et al., 2003; Segal et al., 2003; Zhu

et al., 2002). Bayesian learning by perturbed expression aims at

directly finding the network structure, without the need to estimate

TF activities (Pe’er et al., 2001; Pournara and Wernisch, 2004;

Rung et al., 2002).

As in Liao et al. (2003), our method treats TF activities as hidden

variables which help both the network configuration specification

and the TF-binding strength modeling simultaneously. The estima-

tion of a TF’s activity is independent of the information about its

own transcription profile, which allows further analysis of TF beha-

vior as we demonstrated in the Results section.

Different from Liao’s NCA model, however, we did not consider

the network configuration as being given. Nevertheless, we consider

both network configuration and connection strength estimation as

integrative components of a general factor analysis model. We fit

the model by iterating between the step of network configuration

search and the step of parameter estimation. Several factors neces-

sitate this adaptive model fitting approach. First, high-throughput

data contain high levels of biological and measurement noise.

Second, we have only incomplete knowledge about the network

configuration. Third, there are probably other hidden variables,

e.g. unknown TFs that are not included in the model. They may

have confounding effects with the variables under study. The use of

prior knowledgebase of TF–target gene relationship and our step-

wise expansion of the network connection make our approach more

immune to these confounding variables. Conceptually, our evolving

model approach is analogous to model building by the neural net-

work approach. In neural network modeling, the number of para-

meters that have to be estimated from the data is overwhelming.

Yet with proper training, the network can converge to a useful local

optimal solution. Likewise, although the full size factor analysis

model (1) has multiple solutions, we aim at converging to a local

optimum by adaptive learning. The available TF-target knowledge

Table 2. TFs that exhibit correlated expression and activity in at least two of

the three synchronized cell cycle experiments

Factor Gene Correlation

Alpha cdc-15 cdc-28

GZF3 GZF3 �0.12 0.55 0.54

IME1 IME1 0.49 0.71 0.44

ASH1 ASH1 0.43 0.72 0.57

HAP2/3/4/5 HAP2 0.61 0.44 0.26

IME1 IME1 0.49 0.71 0.44

MAL13 MAL13 0.46 0.65 0.58

FKH1/2 FKH1 �0.66 �0.65 �0.81

NRG1 NRG1 �0.25 0.66 0.52

PDR1 PDR1 0.16 0.61 0.57

PHO2 PHO2 �0.41 �0.65 �0.14

RCS1 RCS1 0.51 �0.21 0.43

RFX1 RFX1 �0.34 �0.65 �0.96

RME1 RME1 0.34 0.87 0.73

ROX1 ROX1 �0.51 �0.45 �0.37

RPN4 RPN4 �0.47 �0.72 �0.09

THI2 THI2 0.59 0.88 0.66

YAP1 YAP1 0.39 0.82 0.56

Table 3. TFs that have activity lagging behind expression in at least two of

the three synchronized cell-cycle experiments

Factor Gene Alpha-factor cdc-15 cdc-28

Shift

(min)

Correlation Shift

(min)

Correlation Shift

(min)

Correlation

after

shifting

CHA4 CHA4 4 0.66 19 0.40 17 0.49

HAA1 HAA1 8 0.79 14 0.32 20 0.66

HAP2/3/4/5 HAP4 15 �0.93 10 0.32 10 �0.74

HIR2 HIR2 7 �0.20 20 0.68 7 0.53

MET28 MET28 5 0.48 16 0.73 12 0.43

MIG2 MIG2 8 0.68 4 0.69 18 �0.35

PDR3 PDR3 18 �0.36 20 0.60 20 0.65

PHO4 PHO4 17 0.92 1 0.45 10 �0.34

SWI4 SWI4 10 �0.87 20 �0.29 17 �0.74

SWI6 SWI6 15 0.59 0 �0.32 20 0.86

Fig. 2. Time-shifting relationship between the expression profile and activity profile of SWI4; alpha-factor synchronized cell cycle, 10 min shift. Left panel: the

expression profile (curve) and activity profile (broken line); right panel: the expression profile (curve) with shifted activity profile (broken line).
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serves us well in providing a reasonable starting point. As the

repertoires of data and knowledge grow richer and richer in the

future, we can expect our approach to become even more powerful.

We report two regulatory networks under different growth con-

ditions for Saccharomyces cerevisiae. The network under the nor-

mal growth condition is estimated from cell-cycle microarray data

and normal growth ChIP data. Based on the TF activity identified

from the cell-cycle time-series, new time-shifting relationships are

found between the activity and expression of some TFs. The stress–

response network is estimated by using stress–response ChIP data

and gene-expression data, pooling many stress conditions together.

This network explains the expression of 98% of the ESR genes

identified by Gasch et al. (2000), and correctly identifies several

leading regulators. Somewhat expected, a comparison between

the two networks shows that most TFs are regulating different

sets of genes. An interesting exception is RAP1 (repressor activator

protein). RAP1 regulates 45 genes for the network under normal

growth condition, whereas it regulates 211 genes under stress con-

dition. Among these two sets, 27 genes are shared (P-value �10–27).

Furthermore, we find that 26 of the 27 shared genes are associated

with protein biosynthesis, a process that is repressed under stress

conditions. This is consistent with RAP1’s role in ESR regulation

(Gasch et al., 2000; Li et al., 1999).

In this report, all gene-expression profiles are standardized before

the network estimation starts. We did not filter out genes with less-

varying expressions in their original scale. As suggested by a ref-

eree, proper pre-screening should help reduce the instability in

estimating our model parameters associated with such non-

informative genes. During the revision of this paper, we examined

the standard deviations in the original expression profiles and com-

pared those for genes in our final network with those for the remain-

ing genes. We find significantly higher expressional variation for the

genes in the network [(P-value: 1.4 · 10�77 for cell-cycle data and

4.4 · 10�129 for stress–response data); see Supporting Figure 9].

These findings suggest that our results are not overwhelmed by the

non-varying expression profiles.
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