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ABSTRACT
Motivation: Cellular processes are not isolated groups of events.
Nevertheless, in most microarray analyses, they tend to be treated
as standalone units. To shed light on how various parts of the inter-
locked biological processes are coordinated at the transcription level,
there is a need to study the between-unit expressional relationship
directly.
Results: We approach this issue by constructing an index of correl-
ation function to convey the global pattern of coexpression between
genes from one process and genes from the entire genome. Pro-
cesses with similar signatures are then identified and projected
to a process-to-process association graph. This top–down method
allows for detailed gene-level analysis between linked processes to
follow up. Using the cell-cycle gene-expression profiles for Sacchar-
omyces cerevisiae, we report well-organized networks of biological
processes that would be difficult to find otherwise. Using another data-
set, we report a sharply different network structure featuring cellular
responses under environmental stress.
Contact: kcli@stat.ucla.edu
Supplementary information: http://kiefer.stat.ucla.edu/lap2/
download/KL_supplement.pdf

INTRODUCTION
Microarray gene-expression profiling enables the assessment of tran-
script abundance at the full genome scale. A variety of methods has
been proposed to process the microarray data for different purposes,
such as annotating gene functions (Eisen et al., 1998; Zhou et al.,
2002), finding transcription factor binding motifs (Conlon et al.,
2003; Ihmels et al., 2002) and unraveling expression regulation cir-
cuitry (Li, 2002; Li et al., 2004; Qian et al., 2003; Qin et al., 2003;
Spellman et al., 1998). Such studies are mainly at the gene-to-gene
association level. Genes with similar expression patterns are thought
to be more likely functionally associated. They may form structural
complexes, participate in the same pathway or be regulated by a
common mechanism.

Given that cellular processes are not isolated groups of events,
the important issue of how various parts of the cellular system are
coordinated needs to be addressed. Gene Ontology (GO) provides
an excellent platform for dissecting the complex genetic circuitry
into knowledge-based subunits (Ashburner et al., 2000). GO terms
classify genes by the properties of their protein products. Because
mRNA plays a critical role in regulating the linear flow of genetic
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information from DNA to protein, analysis of gene-expression data
at the GO-term level can shed light on the cell’s global management
scheme in coordinating the uninterrupted supply of numerous protein
products to meet the needs in various biological processes.

The term-to-term expressional relationship is more complex than
the single gene-to-gene coexpression. As detailed in the Results sec-
tion, the gene-to-gene correlations within most GO terms are not
significant. Nevertheless, genes in each term have many strongly cor-
related genes from elsewhere of the genome. These correlated genes
are not tightly correlated within themselves and they often come
from diverse functional categories. Such results indicate that mul-
tiple intracellular and/or extracellular cues are utilized in regulating
the mRNA sources.

We attempt to quantify the degree of expressional association
between a pair of GO terms, A and B, by taking into account the
aforementioned multiple cellular cues. Instead of considering only
the coexpression pattern between the genes in A and B, we incor-
porate information from genes outside of the two GO terms. This
idea is implemented by constructing a probability function, termed
genome-wide index of correlation (GIOC) function, to convey the
genome-wide coexpression pattern for genes in a GO term.

We first select a set of parallel terms, as outlined in Figure 1, from
the gene ontology system (arrow a) to represent biological processes.
Based on the gene-to-gene correlations obtained from microarray
data (arrow b), we quantify the distance between every pair of terms
(arrows c, d, e), using Kullback–Leibler (K–L) divergence between
their GIOC functions. Following the measurement, a statistical hypo-
thesis testing problem is formulated to obtain significant pairs of
expressionally associated terms (arrow f). We convey the final results
with a term-to-term association graph (arrow g). In this way, biolo-
gists can describe the global pattern of expressional association at the
biological process level before going into the more detailed gene-to-
gene level analysis. This strategy of portraying genetic circuitry at
the GO-term level and the gene level, is in line with the increasingly
more popular call for multiscale research when studying complex
problems.

METHODS

Genome-wide index of correlation
For each GO term H , we create a probability function to serve as its GIOC.
Denote the collection of all yeast genes present in the gene-expression dataset
as G. For each gene profile xi in G, we first evaluate its correlation with every
gene profile yj in H . The highest correlation, ci = maxj corr(xi , yj ), where
the maximum is taken over all genes in H , indicates the level of interaction
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Fig. 1. Strategy of the study. Arrow a: select biological processes from the gene ontology system using a scheme described in Supplementary Figure 7.
Arrow b: compute correlations from large scale microarray data. Arrow c: find gene level linkages between processes (this step may be skipped). Arrow d:
GIOC functions are established for each process. Arrow e: use similarity between GIOC functions to measure the degree of expressional association between
processes. Arrow f : determine the significance of process association by randomization test. Arrow g: connect associated processes and project the results as a
graph.

between gene i and term H . Using the clustering analysis terminology, this
corresponds to the single linkage distance measure between xi and all genes
in term H . We then convert ci into an index of correlation by a power function
transformation. More specifically, we assign each gene i in G a probability
mass pi ∝ (1+ci )

6. Here the proportionality can be determined by setting the
total probability mass equal to 1. The resulting probability function PH (xi) =
pi , i = 1, . . . , n, is called the GIOC function for term H .

GO term expressional association measure
The degree of expressional association between two GO terms H1 and H2 is
determined by how similar their GIOC functions are. We use K–L divergence
between probability measures to quantify the distance:

KL(H1, H2) =
n∑

i=1

PH1 (xi ) log2

[
PH1 (xi )

PH2 (xi )

]
.

K–L divergence is not symmetric. A symmetrized version is to use the average
[KL(H1, H2) + KL(H2, H1)]/2.

The next step is to determine if two GO terms can be called expressionally
associated or not. This is achieved through a randomization test of significance
to see if the observed K–L distance is shorter than what would be expected
when two terms are not associated.

Randomization test of significance
We first specify the null hypothesis. Suppose there are n genes in term H1,
and m genes in term H2. To incorporate the case that there may be genes that
are annotated to both terms, we further assume that there are r overlap genes.
Under the null hypothesis of no association between two terms, the m+n− r

gene-expression profiles for these two terms should behave as if they were
randomly drawn from the entire gene-expression database. To find the null
distribution of the K–L distance, we use the Monte Carlo method. We first
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draw n + m − r profiles randomly from the collection of all gene profiles.
We use the first n of them to form one term and the last m of them to form
the second term. This naturally leads to r overlaps between the two terms.
We then compute the K–L distance between these two artificially created
terms. This procedure is iterated many times to yield an approximation of
the distribution of K–L distance. Once the null distribution is available, we
can call a pair of GO terms significantly associated if their K–L distance is
shorter than a cutoff percentile.

RESULTS

Selecting GO terms to represent biological processes
We use the ‘biological process’ ontology for Saccharomyces
cerevisiae. The GO system forms a directed acyclic graph. In this
report, we restrict the study to a representative set of GO terms that do
not have ancestor–descendent relationships. This is because the ana-
lysis of a full size GO, which contains both ancestor–descendent and
sibling relationships, involves too much complexity and redundancy
to yield easily interpretable results.

Selecting representative terms is not a simple issue to address.
Instead of relying solely on expert opinions, we use computer search
to gain objectiveness. Our program traverses the entire ‘biological
process’ branch of GO from top to bottom (Supplementary Figure 5).
A couple of parameters are optimized to reach the dual aim of choos-
ing terms as close to the bottom level as possible, and covering as
many genes as possible. The result is a collection C of 214 paral-
lel terms. This representative list is at a scale finer than ‘GO slims’
(Ashburner et al., 2000; Dwight et al., 2002). The distribution of the
number of genes in the selected terms is shown in Supplementary
Figure 6.

Within-GO term and between-GO term
correlation structures
In order to find a proper measure of the expression association
between two GO terms, we first study how gene-expression pro-
files within a GO term are correlated. We created an on-line GO
term computation page (a module in http://kiefer.stat.ucla.edu/lap2)
to facilitate the investigation. Given a pair of terms X and Y , the sys-
tem computes gene-level correlations within each term and between
the two terms. Subject to a user-specified size limit, the system also
searches the entire genome for two lists of highest co-expressed
genes, one for each term. These two lists are then linked to the
GO Term Finder of SGD to identify enriched functional groups.

Our preliminary study shows that not all genes from the same GO
term are tightly coexpressed. To the contrary, the correlations within
the majority of the terms we investigate are low (Supplementary
Figure 7); e.g. the range is between −0.50 and 0.47 for ‘actin cor-
tical patch assembly’ (14 genes), between −0.59 and 0.80 (median
0.03) for ‘axial budding’ (21 genes), and between −0.18 and 0.43
(median 0.19) for ‘NAD biosynthesis’ (6 genes). The correlations are
much higher for terms involving translation mechanism, e.g. from
−0.16 to 0.85 (median 0.53) for ‘ribosomal large subunit biogenesis’
(14 genes).

Our preliminary study also suggests that yeast uses multiple intra-
cellular or extracellular cues in regulating the resources devoted to
a functional module. Despite the low average correlation within a
GO term, each term has many strongly correlated genes from else-
where of the genome; but these genes are not highly correlated within
themselves, and their cellular roles are diverse. For instance, when
we submit the top 200 genes which have the best correlations (all

>0.57) with ‘NAD biosynthesis’ to GO Term Finder, no more than
one-quarter of them fall into functionally enriched groups, the most
visible ones being ‘catabolism’ (27 genes), ‘protein folding’ (10
genes) and ‘regulation of protein metabolism’ (5 genes).

These preliminary findings argue for the merit of considering
GIOC function. Our aim is to find a higher order organization among
a diverse list of biological processes. Therefore, in quantifying the
degree of expressional association between a pair of GO terms, we
should not isolate the genes in the term pair from the rest of the
genome. On the contrary, the information from genes outside of
the two GO terms must be integrated first.

Expressional association in cell cycle
Using the cell-cycle dataset (Spellman et al., 1998), we compute
the GIOC function for each term. Furthermore, based on the K–L
distance and P -values from randomization tests, we find a total
of 202 GO-term associations significant at level 0.025. The out-
put is displayed as a graph by Cytoscape (Shannon et al., 2003)
(Fig. 2). Four large sections are visible topologically; together they
show a very clear higher order functional organization between
GO terms that would be hard to detect using standard bottom-up
analyses.

Component A features cell-cycle mechanisms, which have often
been discussed in the literature for this dataset. Component B exhib-
its a coherent operation within the translation mechanism, which is
also well-anticipated. Component C features the protein transport
mechanism. This component is further enriched by two actin-related
terms: ‘actin cortical patch assembly’ and ‘actin polymerization
and/or depolymerization’ (14 and 7 genes, respectively; no over-
lap), which agrees with the role actin plays in the cell (Palmgren
et al., 2002). Component D shows an extensively connected network
of metabolic processes including four major categories: coenzyme
metabolism, amino acid/lipid metabolism, small molecule trans-
port/homeostasis and polysaccharide metabolism/energy generation.
We further discuss the importance of coenzyme terms and calcium
homeostasis in Supplementary information Text 1.

Expressional association and other
distance measures of GO
Terms with short GO-graph distances tend to have shorter K–L dis-
tances (Fig. 3a), and higher chance of being connected (Fig. 3b).
However, the trend is weak. Terms located far apart according to
the node-to-node distance induced by the graph of the GO system
can still have strong expressional association. For example, the term
‘translation initiation’ is located 10 steps away from ‘ribosomal large
subunit assembly and maintenance’ (35 and 34 genes, respectively;
no overlap). Biologically, they have tight relationship and we do
observe strong expressional association between them. Although the
GO graph distance is simple to compute, the implicit equal path
weight for the entire GO graph may not be appropriate. Upon the
advice of a reviewer for this paper, we provide further discussion
using a modified version of Lord et al.’s semantic similarity measure
(2003) in Supplementary information Text 2.

Environmental stress data
One major purpose of our method is to allow the comparison of
cellular regulation strategy under different conditions. For a compar-
ison, we apply the same method to the environmental stress dataset
(Gasch et al., 2000). The significant term-to-term associations are
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Fig. 2. Term-to-term expressional association based on cell-cycle data. This figure gives the final graph output following steps outlined in Figure 1. A
representative list of 214 GO terms were used. Four sections, A, B, C and D, are easily identified.

displayed in Figure 4. In total, 91 connections are found. Compar-
ison with Figure 2, shows that the two graphs have only a small
portion of overlap. Of the 12 preserved connections (Supplement-
ary Table 8), 6 are ribosome related. This agrees with the notion that
cellular protein synthesis machinery is constantly under tight control
irrespective of the growth conditions (Gasch et al., 2000). Connec-
tions in the component A of Figure 2, which feature the cell-cycle
mechanism, are no longer present in Figure 4. In the stress–response
experiments, mRNA samples were collected from unsynchronized
cell cultures, which make it difficult to distill cell-cycle informa-
tion from the data. For further discussion about the network, see
Supplementary information Text 1.

DISCUSSION
GO term relationships have been studied using protein interaction
(Giot et al., 2003) and genetic interaction data (Tong et al., 2003).
For microarray data, differentially expressed genes can be mapped
to GO or other knowledge sources to identify enriched functional
group (Berriz et al., 2003; Cheng et al., 2004; Draghici et al., 2003;
Dwight et al., 2002; Mootha et al., 2003; Robinson et al., 2002).
Alternatively, some authors argue that whether a group is enriched
or not should be determined based on the average expression for all
genes within the group (Pavlidis et al., 2004; Smid and Dorssers,
2004; Volinia et al., 2004).
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Fig. 3. GO-graph distance and expressional association. (a) Boxplots show-
ing the relationship between GO-graph distances and K–L distances. (b)
Proportion of expressionally associated pairs versus GO-graph distance. The
GO-graph distance between two terms is the length of the shortest path
between them, considering all edges as bi-directional. The K–L distances
were computed from cell-cycle data.

Our method is different from those used in comparative gene-
expression studies. It systematically finds biological processes that
are more tightly coordinated under the cell’s mRNA allocation pro-
gram. At the core of our approach is the creation of a GIOC function
that conveys the extent of correlation between genes annotated to a
GO term and genes in the entire genome.

Power transformation in constructing
the GIOC function
We chose to use power 6 for the transformation in constructing
the GIOC function. A similar idea has been used to give weight
to distances (Zhou et al., 2002). The purpose is to assign more
weights to higher correlations without enforcing a hard threshold.
For example, using a power of 6, a correlation of 0.5 will receive
∼20% of the weight that the perfect correlation of 1 will receive,
whereas a correlation of 0.8 will increase the weight to 50%. Our
method is insensitive to the choice of power. Supplementary Table 9
shows the correlation between term-to-term distances induced by
different powers. Even if a power of 3 or 9 is used, we still find the
correlation exceeding 0.96 across the board.

Gene sharing
Gene sharing between GO terms is a positive factor in shorten-
ing the K–L distance between their GIOC functions. This factor

is automatically adjusted for by the randomization test. For the same
term sizes, the reference curve is shifted to the left as the number
of overlapping genes increases (Supplementary Figure 10). Thus, if
two terms have more overlapping genes, a shorter distance has to be
observed in order to establish a significant connection. Consequently,
we find no systematic selection bias toward pairs of terms with more
overlaps in our results (Supplementary Table 11).

From term level association to gene level association
Our global sketch of the term-to-term relationship sets tone for con-
ducting more elaborate gene-level investigations. Using the on-line
system described in the preliminary study section, we can compute
the gene-level correlations for any linked GO term pairs. The system
also searches the entire genome for two lists of highest coexpressed
genes, one for each term. The coexpressed genes shared between the
two lists are likely to be the source of intracellular cues that bridge
the connection between the two terms. As proven by Zhou et al.
(2002), ‘transitive expression similarity’ is an important attribute for
discovering more functionally associated genes.

We find two possible scenarios for a pair of terms to be linked by
our expressional measure: (1) by tight coexpression between their
genes directly; (2) by their shared co-expressed genes elsewhere in
the genome. Ribosome and translation related genes are known to
be under tight cellular control. As expected, both the within-term
and the between-term correlations in component B of Figure 2 are
high. In contrast, we find both the within-term and the between-
term correlations in component D are much lower (Supplementary
Figure 12). This indicates that multiple intracellular cues have been
utilized to ensure the proper flow of metabolites across a variety of
metabolic processes.

As an example of the first scenario, in Supplementary Figure 13a,
the expression profiles for genes in the pair ‘rRNA modification’ and
‘ribosomal large subunit biogenesis’ (both 14 genes; no overlap) are
compared by hierarchical clustering. Many cross-term neighbors are
observed.

As an example of the second scenario, we revisit the term ‘NAD
biosynthesis’ in component D of Figure 2. As one of the key coen-
zymes involved in multiple metabolic pathways, the level of NAD
and NAD/NADH ratio is crucial for maintaining well-regulated
metabolism. Reflecting this important physiological relationship,
our method finds a direct link between ‘NAD biosynthesis’ and
‘NADH metabolism’ (6 and 7 genes respectively; no overlap). In
order to identify the source of the link, we find the coexpressed
genes for each term. There are 463 genes that have correlations of
>0.5 with ‘NAD biosynthesis’, and 363 genes with ‘NADH meta-
bolism’. The two groups share 117 genes. These 117 genes serve
as the bridges that link the two terms. However, there are only two
cross-term correlations >0.5. We note that the two terms share an
ancestor ‘nicotinamide metabolism’. Among the 13 genes that are
annotated to this ancestor but not to the two NAD terms, 11 are
in the descendent term ‘NADPH regeneration’ (no overlap with the
two NAD terms). However, ‘NADPH regeneration’ is connected to
neither of the two terms, and none of its 11 genes serve as a bridge
for the two terms.

Another example is the pair ‘NAD biosynthesis’ and ‘tricarboxylic
acid cycle’ (6 and 14 genes respectively; no overlap). It is well-
known that multiple steps in the TCA cycle require NAD (Alberts
et al., 2002) and our method does find the link between these two
terms. There are 463 genes that have correlations of >0.5 with ‘NAD
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A B

Fig. 4. Term-to-term expressional association based on environmental stress gene expression data. This figure is generated in the same way as in Figure 2.
Less connections are found. Section A features yeast’s characteristic responses under stress. Section B features a cluster of ribosome/protein synthesis terms,
together with a group of closely related metabolic terms.

biosynthesis’, and 566 genes with ‘tricarboxylic acid cycle’. The
two groups share 207 genes. However, there is only one cross-term
correlation >0.5. Supplementary Figure 13b and c show how the
clustering patterns in these two examples are different from what is
seen in Supplementary Figure 13a.

Network display and inference
We view our method mainly as an exploratory tool. Although we
have presented our results as networks of biological processes, the
method itself can serve the general purpose of comparing the beha-
vior of two gene categories in microarray data. Unlike correlation
coefficient which is bounded between −1 and 1, K–L distance is
not upper-bounded. We make its interpretation easier by comparing
with a reference distribution. The reported P -value for a pair of terms
serves as a Monte Carlo estimate of the relative standing of their K–L
distance as compared to all possible K–L distances. A small P -value
indicates a short distance.

The P -value cutoff of 0.025 used in this study is only suggestive.
In fact, as one referee points out, there are other ways of present-
ing the results. In Supplementary information Text 3, we present
the results using heat-map and single-linkage hierarchical clustering
trees. Areas in the heat map that correspond to the components in

Figures 2 and 4 are labeled. We further collect all term associations
with P -value <0.1 in our website http://kiefer.stat.ucla.edu/lap2.

We did not adjust P -value for multiple testing. Statistical infer-
ence on network configuration is a very complex issue and it requires
balanced attention on both the false positive rate and false neg-
ative rate. The classical adjustment by the Bonferroni method is
too conservative. More recently there has been a growing interest
on false discovery rate (FDR) (Reiner et al., 2003). However, in
view of the complex dependence in the network structure, the inde-
pendence or the special dependence requirement on the testing stat-
istics (Benjamini and Yekutieli, 2001) makes such FDR procedures
inadequate for our problem.

In order to elaborate more on the network structure issue, con-
sider the typical question about the number of false positives. With
a fixed unadjusted P -value cutoff at 0.025, the standard answer is
0.025M , where M is the number of true null hypotheses. However,
this straightforward answer can be misleading because it does not
take into account the network configuration. For instance, consider
the case that M = 3. If the three true null hypotheses are (1) term
A and term B randomly assembled; (2) term B and term C ran-
domly assembled; (3) term C and term D randomly assembled, then
implicitly all four terms A, B, C, D are randomly assembled. Thus
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by accounting for the three additional implicated hypotheses, the
answer should be 0.025 × 6 instead of 0.025 × 3. In real application,
M is unknown. If we were to assume M equals the upper bound,(

214
2

)
, we should expect 570 false-positives—a number far greater

than 202, the number of significant connections found in the cell-
cycle data. This shows that we need a better proposal to estimate
M . Unfortunately, the proposals in the literature generally require
independence assumption which is clearly violated in our setting.

Up to now, our discussion reflects only the statistical point of
view. It is possible to approach the FDR issue by incorporating some
biological perspectives. A rough estimate of FDR can be obtained by
considering two distant categories of GO terms that are less likely to
be expressionally associated. Denote the number of GO terms that
fall under the two categories by a and b, respectively. There are a total
of ab possible cross-category connections. Suppose among them our
method finds x significant connections. Denote the number of true
connections by c(c < x). Then the false positive rate can be estimated
by (x − c)/(ab − c) ≤ x/ab. For example, if we take one category
to be cell-cycle/reproduction/DNA metabolism related terms (a =
38) and the other to be small molecule metabolism/transport terms
(b = 112), then the estimated false positive rate is bounded by
1.7 × 103 (x = 5). This translates into 27 false positives among our
202 reported connections.

Other technical issues
In Supplementary information Text 4, we show that term-level
connection can be mediated by multiple transcription factors. In
Supplementary information Text 5, we conduct simulations to eval-
uate how well our method can tolerate aberrations in microarray
measurement.
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