University of California, Los Angeles Department of Statistics

Statistics 100A

Instructor: Nicolas Christou

Central limit theorem - Proof

If X_1, X_2, \dots, X_n are i.i.d. (independent and identically distributed) random variables having the same distribution with mean μ , variance σ^2 , and moment generating function $M_X(t)$, then if $n \to \infty$ the limiting distribution of the random variable $Z = \frac{T-n\mu}{\sigma\sqrt{n}}$ (where $T = X_1 + X_2 + \dots + X_n$) is the standard normal distribution N(0, 1).

Proof:

$$M_Z(t) = M_{\frac{T-n\mu}{\sigma\sqrt{n}}} = Ee^{\frac{T-n\mu}{\sigma\sqrt{n}}t} = e^{-\frac{n\mu}{\sigma\sqrt{n}}t} M_T(\frac{t}{\sigma\sqrt{n}})$$

But $T = X_1 + X_2 + \cdots + X_n$. From earlier discussion the mgf of the sum is equal to the product of the individual mgf. Here each X_i has mgf $M_X(t)$. Therefore,

$$M_T(\frac{t}{\sigma\sqrt{n}}) = \left[M_X(\frac{t}{\sigma\sqrt{n}})\right]^n$$

and so $M_Z(t)$ is equal to

$$M_Z(t) = e^{-\frac{n\mu}{\sigma\sqrt{n}}t} \left[M_X(\frac{t}{\sigma\sqrt{n}}) \right]^n$$

One way to find the limit of $M_Z(t)$ as $n \to \infty$ is to consider the logarithm of $M_Z(t)$:

$$\ln M_Z(t) = -\frac{\sqrt{n} \mu}{\sigma} t + n \ln M_X(\frac{t}{\sigma\sqrt{n}})$$

Expanding $M_X(\frac{t}{\sigma\sqrt{n}})$, using the following (also see handout on mgf)

$$M_X(t) = \sum_x P(x) + \frac{t}{1!} \sum_x x P(x) + \frac{t^2}{2!} \sum_x x^2 P(x) + \frac{t^3}{3!} \sum_x x^3 P(x) + \cdots$$

we get

$$\ln M_Z(t) = -\frac{\sqrt{n} \mu}{\sigma} t + n \ln \left[1 + \frac{\frac{t}{\sigma\sqrt{n}}}{1!} EX + \frac{\left(\frac{t}{\sigma\sqrt{n}}\right)^2}{2!} EX^2 + \frac{\left(\frac{t}{\sigma\sqrt{n}}\right)^3}{3!} EX^3 + \cdots \right]$$

Now using the series expansion of $ln(1+y)=y-\frac{y^2}{2}+\frac{y^3}{3}-\frac{y^4}{4}+\cdots$ where $y=\frac{\frac{t}{\sigma\sqrt{n}}}{1!}EX+\frac{(\frac{t}{\sigma\sqrt{n}})^2}{2!}EX^2+\frac{(\frac{t}{\sigma\sqrt{n}})^3}{3!}EX^3+\cdots$ we get:

$$\ln M_Z(t) = -\frac{\sqrt{n} \mu}{\sigma} t + n \left[\frac{\frac{t}{\sigma\sqrt{n}}}{1!} EX + \frac{(\frac{t}{\sigma\sqrt{n}})^2}{2!} EX^2 + \frac{(\frac{t}{\sigma\sqrt{n}})^3}{3!} EX^3 + \cdots \right]$$

$$- \frac{1}{2} \left[\frac{\frac{t}{\sigma\sqrt{n}}}{1!} EX + \frac{(\frac{t}{\sigma\sqrt{n}})^2}{2!} EX^2 + \frac{(\frac{t}{\sigma\sqrt{n}})^3}{3!} EX^3 + \cdots \right]^2$$

$$+ \frac{1}{3} \left[\frac{\frac{t}{\sigma\sqrt{n}}}{1!} EX + \frac{(\frac{t}{\sigma\sqrt{n}})^2}{2!} EX^2 + \frac{(\frac{t}{\sigma\sqrt{n}})^3}{3!} EX^3 + \cdots \right]^3 - \cdots$$

Factor out the powers of t we obtain:

$$\ln M_Z(t) = \left(-\frac{\sqrt{n} \mu}{\sigma} + \frac{\sqrt{n} EX}{\sigma}\right) t + \left(\frac{EX^2}{2\sigma^2} - \frac{(EX)^2}{2\sigma^2}\right) t^2 + \left(\frac{EX^3}{6\sigma^3\sqrt{n}} - \frac{EX EX^2}{2\sigma^3\sqrt{n}} + \frac{(EX)^3}{3\sigma^3\sqrt{n}}\right) t^3 + \cdots$$

Because $EX = \mu$ and $EX^2 - (EX)^2 = \sigma^2$ the last expression becomes

$$\ln M_Z(t) = \frac{1}{2}t^2 + \left(\frac{EX^3}{6} - \frac{EX EX^2}{2} + \frac{(EX)^3}{3}\right)\frac{t^3}{\sigma^3\sqrt{n}} + \cdots$$

We observe that as $n \to \infty$ the limit of the previous expression is

$$\lim_{n \to \infty} \ln M_Z(t) = \frac{1}{2}t^2$$

and therefore

$$\lim_{n \to \infty} M_Z(t) = e^{\frac{1}{2}t^2}.$$

But this is the mgf of the standard normal distribution. Therefore the limiting distribution of $\frac{T-n\mu}{\sigma\sqrt{n}}$ is the standard normal distribution N(0,1).

