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Central limit theorem - Proof

If Xy, Xy, -+, X, areii.d. (independent and identically distributed) random variables having

the same distribution with mean p, variance o2, and moment generating function My (t),

then if n — oo the limiting distribution of the random variable Z = Tg?/”;f‘ (where T =
X+ Xo+ -+ X,,) is the standard normal distribution N(0,1).
Proof:
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But T = X; + Xy + -+ X,,. From earlier discussion the mgf of the sum is equal to the
product of the individual mgf. Here each X; has mgf Mx(¢). Therefore,

and so Myz(t) is equal to
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One way to find the limit of My(t) as n — oo is to consider the logarithm of My(t):
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Expanding M X(T\t/ﬁ>7 using the following (also see handout on mgf)
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we get
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Now using the series expansion of In(1+y) =y — 3’2—2 + % — % + - -+ where
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TEX + .- we get:
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Factor out the powers of ¢t we obtain:
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Because EX = p and EX? — (EX)? = ¢ the last expression becomes
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We observe that as n — oo the limit of the previous expression is
1
lim In My(t) = 5252

and therefore
lim My(t) = ezt

But this is the mgf of the standard normal distribution. Therefore the limiting distribution
of Tg?%“ is the standard normal distribution N(0,1).
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