Statistics 100B

Instructor: Nicolas Christou

Exam 1 26 April 2013

Name: _____

Problem 1 (25 points) Answer the following questions:

a. Suppose \bar{X} is unbiased estimator of μ_X . Is \bar{X}^2 an unbiased estimator of μ_X^2 ?

b. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim N(0, \sigma)$. Find $E \frac{X_i^2}{\sigma^2}$.

c. Refer to part (b). What is the distribution of $\frac{X_1}{\sqrt{\sum_{i=2}^n x_i^2}}$? Please show all your work.

d. Suppose the logarithm of a stock price in six months will follow the normal distribution with mean \$50 and standard deviation \$20. Find the probability that the stock price in six months will exceed \$79. Note: It is given that $ln(X) \sim N(50, 20)$.

Answer the following questions:

a. Let $X \sim \Gamma(\alpha, \beta)$. Show that $\frac{2}{\beta}X \sim \chi^2_{2\alpha}$.

b. Refer to part (a). Suppose X_1, X_2, X_3, X_4 are i.i.d. random variables with $X_i \sim \Gamma(3, 4)$. Find c such that $P(\sum_{i=1}^{4} X_i > c) = 0.05$.

c. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim N(0, \sigma)$. Find $\hat{\sigma^2}$, the mle of σ^2 .

d. Refer to part(c). Is $\hat{\sigma^2}$ MVUE of σ^2 ?

Answer the following questions:

a. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim N(\theta, 1)$. Let $\hat{\theta}$ be the mle of θ . Is $\hat{\theta}$ MVUE of θ ?

b. If X has a binomial distribution with parameters n and p, then $\hat{p}_1 = \frac{X}{n}$ is an unbiased estimator of p. Another estimator of p is $\hat{p}_2 = \frac{X+1}{n+2}$. Find the bias of \hat{p}_2 .

c. Refer to part (b). Find $MSE(\hat{p}_1)$ and $MSE(\hat{p}_2)$.

d. Assume that you have a sample mean \bar{X} and a sample variance S^2 based on a random sample X_1, X_2, \ldots, X_n from a normal distribution. Suppose you want to predict a new value X_p . Find the distribution of $X_p - \bar{X}$ and use it together with the distribution of S^2 to form a ratio that follows the t distribution. Note: X_p is independent of X_1, X_2, \ldots, X_n .

Problem 4 (25 points)

Consider k independent random variables that have normal distributions with unknown means $\mu_1, \mu_2, \ldots, \mu_k$, respectively, and unknown but common variance σ^2 . Random samples of size $n_i, i = 1, 2, \ldots, n_k$ are selected from these k populations. Answer the following questions:

a. Write the likelihood and log-likelihood function that involves all the information above.

b. Use the method of maximum likelihood to find estimates of $\mu_i, i = 1, 2, ..., k$ and σ^2 . Denote these estimates with $\hat{\mu}_i, i = 1, 2, ..., k$ and $\hat{\sigma^2}$.

c. Is $\hat{\sigma}^2$ unbiased estimator of σ^2 ? If not, give the unbiased estimator of σ^2 and denote it with S_k^2 .

d. Find the distribution associated with S_k^2 .