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THE X2 TEST OF GOODNESS OF FIT1 

BY WILLIAM G. COCHRAN 

Johns Hopkins University 
1. Summary. This paper contains an expository discussion of the chi square 

test of goodness of fit, intended for the student and user of statistical theory 
rather than for the expert. Part I describes the historical development of the 
distribution theory on which the test rests. Research bearing on the practical 
application of the test-in particular on the minimum expected number per 
class and the construction of classes-is discussed in Part II. Some varied 
opinions about the extent to which the test actually is useful to the scientist 
are presented in Part III. Part IV outlines a number of tests that have been 
proposed as substitutes for the chi square test (the w2 test, the smooth test, 
the likelihood ratio test) and Part V a number of supplementary tests (the run 
test, tests based on low moments, subdivision of chi square into components). 

2. Introduction. In the standard applications of the test, the n observations 
in a random sample from a population are classified into k mutually exclusive 
classes. There is some theory or null hypothesis which gives the probability 
pi that an observation falls into the ith class (i = 1, 2, **k). Sometimes the 
pi are completely specified by the theory as known numbers, and sometimes 
they are less completely specified as known functions of one or more parameters 
al, a2, ... whose actual values are unknown. The quantities mi = npi are 
called the expected numbers, where 

k k 

Epi= 1, E = n. 
il1 i=l1 

The starting point in the theory is the joint frequency distribution of the 
observed numbers xi falling in the respective classes. If the theory is correct, 
these observed numbers follow a multinomial distribution with the pi as proba- 
bilities. The joint distribution of the xi is therefore specified by the probabilities 

n___ __ _XI_ _ X1 
. .2 

(1) Xl1 X2 

! 

. . . Xk !Pi P2 **Pk 

As a test criterion for the null hypothesis that the theory is correct, Karl 
Pearson [1] proposed the quantity 

x2 k (Xl- 2 k 2 

(2) X= E (l - - E 
i=l mi i=l Mi 

1 Department of Biostatistics Paper No. 282. 
Editor's Note: This paper was presented to the Boston meeting of the Institute 

of Mathematical Statistics, December 28, 1951, and is published in the Annals by invitation 
of the Institute Committee on Special Invited Papers. 
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316 WILLIAM G. COCHRAN 

Pearson did not mention any particular alternative hypothesis. The test has 
usually been regarded as applicable to situations in which the alternative hy- 
pothesis is described only in rather vague and general terms. 

As with any test of a hypothesis, certain properties of the test must be worked 
out before it is ready for practical4application. We need to know the frequency 
distribution of the test criterion when the null hypothesis is correct, in order 
that tables of significant values can be constructed. As much as possible should 
also be known about the performance of the test when the null hypothesis 
does not hold. Practically all the results in the literature deal only with the 
limiting distribution of X2 as n -* oo, the pi remaining fixed. When the null 
hypothesis holds, this limiting distribution is the x2 distribution, 

(3) 1 -1 2) (vI)/ 2)eix2 d%2X 

where v is the number of degrees of freedom in x2. This distribution is also 
known to be that followed by the quantity 

y2 + y22 + * + Y2, 

where the yi are normally and independently distributed with zero means and 
unit variances. 

To avoid confusion, the symbol X2 will be used for the quantity in equation 
(2) which is calculated from the data when a chi square test is performed. The 
symbol x2 will refer to any random variate which follows the tabular chi square 
distribution given in (3). 

PART I. HISTORICAL DEVELOPMENT OF THE TEST 

3. Karl Pearson's 1900 paper. This remarkable paper is one of the foundations 
of modern statistics. Its style has always impressed me as unusual for a pioneer- 
ing paper. Pearson writes with the air of a man who knows exactly what he is 
doing. The exposition, although clear, is slightly hurried and brusque, as if the 
reader will not wish to be troubled by elaborate details of a problem that is 
routine and straightforward. One misses any discussion of how Pearson came 
to choose the X2 test criterion, and of when he first came to realize that this 
criterion would, under certain circumstances, follow the x2 distribution. 

The paper opens by proving that if a set of v correlated variates zi, with zero 
means, follow a multivariate normal distribution 

Ce1"dzldz2 *-- dz,, 

then the quadratic form Q is distributed as X2 with v degrees of freedom. This 
proof is accomplished, in about half a page, by a now familiar geometrical 
argument. Pearson points out that the ellipsoid Q can be "squeezed" into a 
sphere. A transformation to polar coordinates is made, where x is the radius 
of the sphere and Q = x2. He then remarks that all the angles introduced in 
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X2 TEST OF GOODNESS OF FIT 317 

the transformation will integrate out to a constant factor, so that the proba- 
bility that Q exceeds xo', say, reduces to 

00 A iX2 P-1dx 
p = XO 

f e' ix %d xo 

This, of course, is the tabular x2 distribution, expressed as an integral of x 
rather than X2. The result is a generalization of the result reached by Helmert 
in 1876, and also of the result which Student later developed in 1908 as ground- 
work for the t-distribution. 

The next step is to express the probability integral in power series form, 
this being necessary to construct a table of the probability integral. The paper 
contains a table giving P to 6 decimal places, for degrees of freedom from 2 
to 19, and for various integral values of X2. 

Pearson now turns to the problem of testing goodness of fit. He deals first 
with the case in which the expectations mi are known numbers. The data have 
been classified as described in Section 2, so that the observations xi follow a 
multinomial distribution. Pearson assumes without more ado that the xi may 
be taken as normally distributed. It is at this point, therefore, that he is com- 
mitted to the assumption that the expectations mi are large in all cells. He 
assigns to the xi their correct variances and covariances from the multinomial 
distribution, that is, 

(4) aii = np*(1 - pi), oij n-pipj (i P j) 
The remainder of the proof consists in writing down the presumed multi- 

variate normal distribution of the quantities (xi mi). From this comes the 
pleasing result that the quadratic form Q in the exponent is simply 

Q _ (xi _ M2 - x2 
mi 

This may be shown as follows. Since the xi are constrained to add to n, we 
must omit one of them, say Xk, in considering their joint distribution. If the 
joint frequency function of the first (k - 1) of the x's is Ce-I , it is well kniown 
that 

k-1 k-i 

Q E E > i:(xi - m)(xj -my) 
-i= j=i 

where orj is the inverse of the matrix oij given in (4). 
Now consider X2, with (Xk- Mk) replaced by -E jl (x - mi). 

_2 (Xl - ml) 2 (Xk-1 - mk-1)2 

ml Mk-I 

+ {(x-ml) + ... + (Xk- -mk-1)} 
mk 
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318 WILLIAM G. COCHRAN 

Hence, if we write 
k-1 k-1 

X2 = E E ai1 (xi - mi) (x -imj), 
i=l j=l 

the matrix aij is 

(5) aii = + -, aij =*(i F- i) 

The remainder of the proof consists in showing that (5) is the inverse of 
(4). Pearson does this by a rather complicated polar transformation, but the 
student who has some familiarity with the evaluation of determinants will 
find it a fairly easy exercise, as Hotelling [2] has pointed out. It may be helpful 
to write (4) as 

(4') Oyjj = mi (I - _ 
_ij 

_m (ij j), 

and to invert (5) rather than (4), or to prove that the product of the matrices 
aij, ojk is the unit matrix. 

Hence, by the first part of Pearson's paper, we reach the result that in the 
limit as n becomes large, X2 follows the x2 distribution with (k - 1) degrees of 
freedom. 

An approach which avoids most of the mathematical complexities in Pear- 
son's argument has been pointed out by Fisher [3]. If the observations xi are 
regarded as following independent Poisson distributions, their joint frequency 
function is 

k -mi xi k xi 
(6) II e " mi = IH m=' 

i=1 xi i xiJ' 

since Zmi = n. 
Under this assumption, their total T = Exi also follows a Poisson distribu- 

tion, with mean Ems = n. The frequency function of T is therefore 
-n T 

(6') e n 

Hence, on dividing (6) by (6') the conditional frequency function of the xi, 
given that their total T has the value n, is 

n! Xk (ml) (m)x2X2 (m)xk, 
Xl~~~~~~~~~~~~~~~~ _ 

X2 .. Xk. n 

This is the same as the basic multinomial (1). 
This argument implies that in an investigation of the distribution of X2 we 

may start by regarding the xi as following independent Poisson distributions, 
subject to the restriction that Exi = n. 
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x2 TEST OF GOODNESS OF FIT 319 

In the limit, as the mi become large, the quantities 

Yi = -/ 
become normally distributed with means zero and unit standard deviations, 
since the Poisson distribution of xi has mean mi and standard deviation V/ms . 
Hence the limiting distribution of X2 is that of the quantity 

yl + y2 + + yk 

where the yi are independently distributed but are subject to the single linear 
restriction 

k k 

yi = X (xi - mi) 0. 
i=l ~~~i=l 

The fact that in the limit X2 follows the x2 distribution with (k - 1) degrees 
of freedom can now be established by integration or by quoting well known 
theorems on the analysis of variance. This approach also makes it clear that 
if further homogeneous linear restrictions are imposed on the variates (xi -m), 
either by the structure of the data or in the process of fitting, the effect will 
merely be to reduce the degrees of freedom in x2. 

Pearson next considers the situation in which the mi depend on parameters 
that have to be estimated from the sample. Denoting by m' the expectations 
derived from sample estimates of these parameters, and by mi the true ex- 
pectations, he discusses the difference 

k 2 k 2 

X2 _ X,2 = Xi _ xi 
i=1Mi i-IMS 

He suggests that this difference will usually be positive, because we ought to 
be able to do a better job of fitting when we can adjust the estimates of the 
parameters to suit the vagaries of the sample. He argues, however, that the 
difference will be small enough so that if we regard X'2 as also distributed as 
x2 with (k - 1) degrees of freedom, the error in this approximation will not 
affect practical decisions. 

In this conclusion, which is reached with some sign of hesitation, he may 
well have been justified for many applications. We now know that the number 
of degrees of freedom must be reduced in order to give the correct limiting 
distribution. Perhaps the most common of all uses of the X2 test is for the 
2 X 2 contingency table. Unfortunately, Pearson's suggestion works rather 
poorly in this case, since he attributed 3 degrees of freedom to X2, whereas it 
should receive only 1. This point caused some confusion and controversy in 
practical applications, and was not settled for over 20 years. 

Finally, the paper contains eight numerical applications of the new technique. 
In two of these he pokes fun at Sir George Airy and Professor Merriman. They 
had both published series of observations which they claimed to be good illus- 
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320 WILLIAM G. COCHRAN 

trations of variates that follow the normal distribution. In the absence of any 
test of goodness of fit, Airy and Merriman could judge this question only by 
eye inspection. Pearson showed that the significance probability for Airy's 
data was 0.014, although the data from which Pearson calculated X2 had already 
been smoothed by Airy. Merriman fared worse, his probability being 1- parts 
in a million. These examples show the weak position in which the scientist was 
placed when he had to judge goodness or badness of fit in the absence of an 
objective test of significance. 

To summarize, Pearson established the necessary distribution theory folr 
finding significance levels when the null hypothesis provides the exact values 
of the mi, except that he did not show that the exact distribution of X2, which 
is discontinuous, actually approaches x2 as a limiting distribution. A fully 
rigorous proof may be given by the use of moment-generating functions [8]. 

4. The distribution of X2 when the expectations are estimated from the sample. 
This problem is much more difficult and was not elucidated until the appearance 
of Fisher's 1924 paper. In the intervening period, a paper by Greenwood and 
Yule [4] in 1915 illustrates the perplexity which existed among critical users of 
the test and which led to the "degrees of freedom" battle. The authors were 
attempting to examine the effects of inoculation against typhoid and cholera. 
They present a substantial number of 2 X 2 tables containing subjects classified 
as inoculated or not, and also as to whether they contracted the disease following 
exposure to it. The following is an example. 

Kalain (Cholera) 
Not Attacked Total 

Inoculated ..... 1625 5 1630 
Not .............. 1022 11 1033 

Total .......... ......... 2647 16 2663 

X2= 6.08. 

Following Pearson's rule, they assign 3 degrees of freedom to X2. This gives 
a P of 0.108, whereas with 1 degree of freedom, P is 0.015. They realised, how- 
ever, that the hypothesis that inoculation is without effect could be tested. 
alternatively, by calculating the difference (pi - P2) between the percent ill 
among the inoculated and the non-inoculated. On the null hypothesis, the ratio 

R Pl 
P-P2 
piqi+ p2q2 

2/ni n2 

is approximately a normal deviate with mean zero and unit standard deviation. 
This test, as they found, gave more statistically significant results than Pear- 
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X2 TEST OF GOODNESS OF FIT 321 

son's test. The quantity R is exactly equal to X if we use the pooled percent 
ill, p, in estimating the two variances in the denominator, so that the "normal 
deviate" test and the X2 test should be identical. It is not clear that Green- 
wood and Yule recognised this in 1915. 

Although giving the impression of being somewhat in a quandary as to which 
test to employ, they content themselves with the decision to adopt Pearson's 
test, pointing out that it is the more conservative of the two, and adding that 
the issue deserves further theoretical investigation. 

After some controversy, the matter was cleared up in theoretical papers 
[3], [5] by Fisher in 1922 and 1924, supported by sampling experiments which 
were published by Yule [6] and Brownlee [7]. Fisher's 1922 paper included a 
discussion of 2 X 2 contingency tables, and showed that for this case X2 is 
the square of a single quantity which had a limiting normal distribution, and 
that the X2 test and the test of (pi - P2) by the normal distribution are identical. 

Fisher's 1924 paper is much more general. He points out that the limiting 
distribution of X2 depends on the method of estimation. With a poor method 
of estimation, X2 may frequently have a large value even if the theory is cor- 
rect. It is therefore necessary, in a general proof of the distribution of X2, to 
state what is to be the method of estimation. At first sight, the natural method 
would seem to be to choose the unknown parameters so that X2 is as small as 
possible. Fisher shows that in the limit in large samples, this method becomes 
equivalent to the method of maximum likelihood. For his main proof, this 
result serves as an ingenious lemma, since at one point in the main proof he 
assumes that estimation is by maximum likelihood, while at another he as- 
sumes that it is by minimum X2. 

Although Fisher's main proof is not fully rigorous, it is worthwhile to outline 
the principal steps, because the proof does reveal the core of the problem, and 
a rigorous proof requires advanced methods. Fisher starts in the same way as 
Pearson, by considering 

X2 -X'2 = Xi X2 ( =.l mi i=lmi i=1 m, Ms 
where mi is a specified function of a single unknown parameter ca, with mi = 
m,n(a), m' = mi(a'). He expands in a Taylor series about the point a'. The 
first two terms give 

~~r2 v'~ ~ 2 4 M 
2 

2_m (SCa) X2 _ X/2 x i (am )2; + X2{ 2 ( i)2 am}(i ) ~~ -~~ = ~~~ rn'2 
OisaC,2f 2!' 

where 6a = (a - a'). Since the method of estimation consists in choosing a' 
so that X'2 is a minimum, we have 

E 2,(m)=O xi o'm~ 

so that the first term on the right vanishes. 
In the second term on the right, Fisher replaces x, by m'. The error intro- 
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322 WILLIAM G. COCHRAN 

duced by this step may be shown to be of the same order as the third term in 
the Taylor series, which has already been ignored. Hence, 

f ai I SC)2 

X2 _2 = {E (ai) _ a 2m} 6 
m~ka Oa12J 2< 

But if the identity Em'1 = n is differentiated twice, we find 
(2~ 

Hence, 

X2 _ - = {i(omi)f} (6a)2 

If a' is regarded as a maximum likelihood estimate of ca, we may use the 
standard result that the error of estimate (a' - a) has a limiting normal distribu- 
tion, with mean zero, and variance given by 

1 fi(mA2 1 -fi(om\12' 
Ta2, mi M aC mz(a 

This gives the neat result 

x2_ X12 = (ol Ca) 
2 

Ca" 

Our object is to find the limiting distribution of X'2. At this point the facts 
in our possession are: (i) X2 is distributed as x2 with (k - 1) degrees of freedom 
(this follows from Pearson's results, since X2 is calculated from the correct 
W's); and (ii) X2 - X'2 is distributed as x2 with 1 degree of freedom (from 
Fisher's argument). These facts are not sufficient to determine the distribution 
of X'2. However, Fisher points out that the limiting distributions of X'2 and 
(aI - a)2 must be independent, since X'2 was obtained by minimizing X2 with 
respect to a'. Given this additional result, it is easily shown that X'2 must be 
distributed as x2 with (k - 2) degrees of freedom. 

The argument leads to two further results. Any method of estimation that 
is efficient gives estimates which become, in the limit, identical with the maxi- 
mum likelihood estimate. Thus the x2 distribution, with the appropriate re- 
duction in degrees of freedom, is valid for any efficient method of estimation. 
The argument also provides the limiting mean value of X'2 when the estimation 
is inefficient. An interesting corollary is that the mean value of X'2 exceeds 
that of X2 when the efficiency is less than 50 percent. 

Rigorous proofs of the general limiting distribution, when several parameters 
are being estimated, are scarce in the literature. For the student, one of the 
best is that given by Cram&r [8]. The restrictions under which he proves his 
result are stated below. He assumes maximum likelihood estimation. 
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X2 TEST OF GOODNESS OF FIT 323 

THEOREM. Suppose that the k probabilities pi(aei, Ca2, .. , a8) are known 
functions of s < k parameters ac, a2, * *, C8 . For all points of a nondegenerate 
interval A in the s-dimensional space of the aj, the pi satisfy the following con- 
ditions: 

k 

(a) Epi(ei, *,aR) = 1; 

(b) pi(l, *,a) > C2 > 0 for all i; 

(c) every pi has continuous derivatives 5.7 and - . 
8tj aOj aah 

(d) the matrix D =(dp) is of rank s. Then X2 is distributed in the limit, as n - , 
aj 

in a X2 distribution with (k - s - 1) degrees of freedom. 

5. The limiting power function of the test. The literature does not contain 
much discussion of the power function of the X2 test. There has been little demand 
for this from applications, because the test is most commonly used when we do 
not have a clear-cut alternative in mind, and are not in a position to make com- 
putations of the power. 

Suppose that we test the null hypothesis that the expectations are mi when 
in fact they are m'. If the values of m , m' and the significance level are kept 
fixed, then as n increases, it turns out, as would be expected, that the power of 
the test tends to 1. This has been shown by Neyman [9]. In order to examine 
the situation in which the power is not close to 1 in large samples, we must 
somehow make the task continually harder for the test as n becomes larger. 
This can be accomplished either by making the significance probability decrease 
steadily as n increases, thus reducing the chance of an error of type I, or by 
moving the alternative hypothesis steadily closer to the null hypothesis. The 
second method will be discussed here. Let 

m'-Mi = ciV/n; that is, pt - ps = ci/V/n, 

where the quantities ci remain fixed as n increases. 
The nature of the limiting power distribution of X2 is indicated by the follow- 

ing argumert, for which I am indebted to J. W. Tukey. We may write 

x -- mi (xi -m') / m' m'-mi 
(7) ~~~~+ Gi 8/m' ~ ~m; _\/mi 

Now 

M.= I 1 m' M' __ 
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324 WILLIAM G. COCHRAN 

This tends to 1 as n becomes large, since ci and pi are presumed to remain fixed. 
If we adopt Fisher's approach to the distribution theory (Section 3), the 
quantities 

tend to become normally and independently distributed with means zero and 
unit standard deviations, as n becomes large. Consequently, so do the quantities 

(xi M~,) Yi =(47i 

Finally, by equation (7), 
= (X-m) f m-m 2 

i=1 Mi t=1 i= 

where the yi are subject to the linear restriction 
k _ k 

Z yi \ = (x - m') = 0. 

Thus, in the limit, X2 is distributed as a sum of squares of variates (yi + as) 
independently and normally distributed with unit variances, but where the 
means ai are not all zero. The variates are subject to one linear restriction when 
the mi are completely specified. 

This type of distribution is known as a noncentral x2. It depends on two 
parameters-the degrees of freedom, in this case (k - 1), and a parameter 
of non-centrality (a2 + a 2 + + a2), which has the value 

kf (m -mi)2 k 2 k 2 

i=l mi i=l pifn i=1 Pi 

Tables of the noncentral distribution have been provided by Fix [10] and ap- 
proximations studied by Patnaik [11]. 

When the mi have to be estimated from the data, the limiting noncentral 
x2 distribution still holds, with a reduced number of degrees of freedom. A 
rigorous proof is obtained from Wald's derivation of the limiting distribution 
of the likelihood ratio test criterion [12], which becomes equivalent to X2 in 
large samples. 

6. Conditional X2 tests. As has been mentioned, additional homogeneous linear 
restrictions imposed on the deviations (xi - mi) have the effect of reducing the 
number of degrees of freedom attributed to X2 in the limiting distribution of 
X2. These restrictions may arise in the process of fitting, or by the nature of the 
data. They may also be deliberately imposed by the statistician in the device 
known as a conditional test. This device is illustrated by the 2 X 2 contingency 
table, in which it has created some stimulating discussion [13]. 
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x2 TEST OF GOODNESS OF FIT 325 

The data are classified according to two different axes, A and B. 

B1 B2 Totals 

A1 1i X12 ri 
A2 X21 x22 r2 

Totals.a cl C2 n 

Data of this kind occur in at least three distinct experimental situations. 
(i) We select a random sample of n from some population and classify every 

observation into one of the four cells. The symbol xij denotes the observed 
number falling in class AiBj, while pij denotes the' corresponding probability 
of falling in this class, where the sum of the four p's is unity. The null hypothesis 
that the two classifications are independent amounts to the relation 

(8) P11/P12 = P21/P22. 

The joint probability of this group of observations is the usual multinomial 

(9) xll X12 X21!x2 pX21 pl2 p21 P22 

Only two of the pij need to be estimated from the data, because of equation 
(8) and the fact that the pij add to 1. Thus X2 has (4 - 2 - 1) or 1 degree of 
freedom. 

(ii) We take a random sample of size r1 from a population denoted by A1, 
and an independent random sample of size r2 from another population denoted 
by A2. The null hypothesis states that the probability p of an observation 
falling in B1 is the same in both populations A1 and A2. Given the null hy- 
pothesis, the probability of the sample is the product of the two binomials 

(10) {xu!x12!Pri qX2 r2! X21 qX22} (10) {~~~~Xll lx2! X12 {X21 1 XC22 ! 

This is not the same as the multinomial (9). Given data of type (i), however, 
let us arbitrarily impose the restriction that in repeated sampling we will consider 
only those tables which have the same marginal totals ri, r2 as our data. Then 
(9) must be replaced by the conditional distribution of the xij, given ri and r2. 
This conditional distribution is easily seen to be the same as (10). For, starting 
with (9), the distribution of ri (and hence r2) is the binomial 

(11 r2! (plj + P12)(P21 + P22). 
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To obtain the conditional distribution, we divide (9) by (11). The quotient 
reduces to (10) if we note that from (8), 

P_____ P21 - p (say). 
Pll + P12 -21 + P22 

(iii) A third case is obtained if both sets of marginal totals are regarded as 
fixed in repeated sampling. Fisher's tea-tasting experiment [14] is an example. 
The A classification tells whether the milk or the tea was added first, and the 
B classification tells whether the lady guessed that the milk or the tea was 
added first. In Fisher's original experiment, he recommended that the lady be 
informed how many cups were of each kind, and pointed out that she would 
presumably match her guesses to those two numbers. Thus in repeated trials it 
is natural to regard both sets of margins as fixed. 

The appropriate basic distribution of the xii is the conditional distribution 
which develops from (10) if we keep cl and C2 fixed. This is found to be 

(12) r1! r2! cl! c2! 

n! x11! X12! X21! X22! 

Case (i) has 2 unknown parameters and 1 linear restriction on the xii; case 
(ii) has 1 unknown parameter and 2 restrictions, while case (iii) has no un- 
known parameters and 3 restrictions. 

Is the same X2 test to be used for all cases? In large samples there is no conflict, 
because X2 has the same limiting distribution however the linear restrictions 
arise. This is not so in small samples, where the distribution of X2 differs in 
the three cases. Fisher [15] recommends that the distribution of X2 obtained in 
case (iii) be taken as the exact small-sample distribution for all three types of 
data. Questions have been raised about this recommendation. 

Originally, part of the objection came perhaps from a feeling that there is 
something improper in keeping the marginal totals fixed in cases (i) and (ii), 
because if we actually drew repeated samples of the same size by the same 
methods, the margins would not all remain fixed. For a rational appraisal, 
however, the only relevant factors are the effects of the marginal restrictions 
on the significance probabilities (or type I errors) and on the power (or type 
II errors). As regards type I errors, Fisher's recommendation has the great 
advantage that in case (iii) the significance probabilities can be computed 
exactly, whereas in cases (i) and (ii) the distribution of X2 involves nuisance 
parameters, so that "exact" probabilities are not available. 

The issue thus reduces to the question whether any loss of power occurs if 
the case (iii) test is employed with the first two types of data. For case (ii) 
data, Barnard [13] proposed a different test which in some circumstances ap- 
peared to give a small increase in power. More recently K. D. Tocher [16], has 
proved the remarkable result that a modification of Fisher's test is the most 
powerful, in the sense of Neyman and Pearson, for olne-tailed tests with any 
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of the three types of data. The modification is necessary to make the problem 
amenable to Neyman and Pearson's techniques. 

The modification may be illustrated by the example which Tocher presents. 

TABLE 1 
Tocher's illustration 

Original table More extreme cases 
2 5 7 1 6 7 0 7 7 
3 2 5 4 1 5 5 0 5 

5 7 12 5 7 12 5 7 12 

Given the data on the left, we wish to make a one-tailed test at the 5% level. 
The two possible sets of data which deviate more from the null hypothesis are 
shown on the right. In Fisher's exact test, we add the probabilities of the three 
tables as. computed by formula (12). This gives 

0.26515 + 0.04399 + 0.00126 = 0.31040. 

This value is regarded as the significance probability. 
In Tocher's modification, we also compute the total probability of all more 

extreme cases, that is, 

0.04399 + 0.00126 = 0.04525. 

If these numbers, 0.31040 and 0.04525, are both below the stated significance 
level, 0.05, we reject the hypothesis. If they are both above 0.05, we accept. If 
one is above and one is below, as in the present example, we calculate the ratio 

0.05 - 0.04525 = 0.01791. 
0.26515 

Now draw a random number between 0 and 1. If this number is less than 
0.01791, we reject; if greater, we accept. 

Although this procedure may appear somewhat startling at first sight, the 
idea is basically simple. Consider how we can obtain a one-tailed test at the 
0.05 level from the 2 X 2 table in this example. If the null hypothesis is re- 
jected only when the two most extreme cases on the right of Table 1 occur, the 
significance level is actually 0.04525. The third most extreme case, represented 
by the data on the left of Table 1, occurs with probability 0.26515. Conse- 
quently, by the computation above, we obtain a test at the 0.05 level if we also 
declare as significant a fraction 0.01791 of the cases in which the data on the 
left are encountered. Tocher selects this fraction by a table of random numbers. 
There seems no other logical basis for deciding which particular fraction to 
select. 
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PART II. SOME ASPECTS OF THE PRACTICAL USE OF THE TEST 

7. The minimum expectation. Since x2 has been established as the limiting 
distribution of X2 in large samples, it is customary to recommend, in applications 
of the test, that the smallest expected number in any class should be 10 or (with 
some writers) 5. If this requirement is not met in the original classification, com- 
bination of neighboring classes until the rule is satisfied is recommended. This 
topic has recently been subject to vigorous discussion among the psychologists 
[17], [18]. The numbers 10 and 5 appear to have been arbitrarily chosen. A few 
investigations throw some light on the appropriateness of the rule. The approach 
has been to examine the exact distribution of X2, when some or all expectations 
are small, either by mathematical methods or from sampling experiments. 

The investigations are scanty and narrow in scope, as is to be expected since 
work of this type is time-consuming. Thus the recommendations given below 
may require modification when new evidence becomes available. 

To digress for a moment, the problem of investigating the behavior of X2 when 
expectations are small is an example of a whole class of problems that are relevant 
to applied statistics. In applications it is an everyday occurrence to use the re- 
sults of a body of theory in situations where we know, or strongly suspect, that 
some of the assumptions in the theory are invalid. Thus the literature contains 
investigations of the t-distribution when the parent population is nonnormal, 
and of the performance of linear regression estimates when the regression in the 
population is actually nonlinear. Fortunately for applications, the results of 
theory sometimes remain substantially true even when some assumptions fail to 
hold. This fact tends to make statistics a more confusing subject than pure mathe- 
matics, in which a result is usually either right or wrong. 

In any problem of this kind, it is important to define what is meant by saying 
the results remain "substantially true." I stress this point because a reader who 
becomes interested in a specific problem and tries to summarize the available 
knowledge may encounter considerable difficulty. Definitions vary from writer 
to writer and are sometimes entirely subjective, so that the researches may be 
presented in a form which baffles any attempt to apply a uniform definition. 
This remark is not intended as a criticism of work on the X2 problem, where the 
task of summarizing is comparatively easy. However, I believe that the useful- 
ness of this kind of research would be enhanced by careful attention to the ques- 
tions: (i) how are we going to measure the disturbance caused by a failure in 
assumptions, and (ii) when are we going to call this disturbance "serious." 

In the present instance, my criterion is to compare the exact P and the P from 
the x2 table, when the null hypothesis is true, in the region in which the tabular P 
lies between 0.05 and 0.01. This criterion is not ideal, but it does appraise the 
performance of the tabular approximation in the borderline region between 
statistical significance and nonsignificance. A disturbance is regarded as unim- 
portant if when the P is 0.05 in the x2 table, the exact P lies between 0.04 and 
0.06, and if when the tabular P is 0.01, the exact P lies between 0.007 and 
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0.015. These limits are, of course, arbitrary; some would be content with less 
conservative limits. 

The results suggest that four cases need to be considered separately. 
(i) Goodness of fit tests of bell-shaped curves such as the normal distribution. The 

distinguishing feature of this case is that usually only one or two expectations at 
the tails are small, the others being above the conventional limits of 5 or 10. 
Cochran [19] has shown that there is little disturbance to the 5% level when a 
single expectation is as low as 42 

This is also true for the 1% level if the number of degrees of freedom in X2 
exceeds 6. Two expectations as low as 1 may be allowed with negligible disturb- 
ance to the 5% level. Since the'discrepancy between an observed and a postulated 
distribution is often most apparent at the tails, the sensitivity of the X2 test is 
likely to be decreased by an overdose of pooling at the tails. Thus considerations 
of the power of the test urge us to use cells with as small expectations as we dare 
from distributional considerations. The inflexible use of minimum expectations 
of 5 or 10 may be harmful. 

(ii) 2 X 2 contingency tables. This case is the most thoroughly worked out 
and can be regarded as solved for practical purposes. Fisher [15] has given the 
method of obtaining an exact solution, which is not too laborious in samples up 
to size 30. Tables such as Mainland's [20] give the probability levels of the exact 
distribution for two samples each of size up to n = 40, and Yates' table [21] 
gives almost exact tests based on X2 after correction for continuity. 

(iii) Tests in which all expectations may be small. This case occurs from time 
to time, for example, in genetical studies in which a Mendelian ratio is being 
compared over a number of small families. Results by Neyman and Pearson [22], 
Cochran [23] and Sukhatme [24] suggest tentatively that the tabular x2 is toler- 
ably accurate provided that all expectations are at least 2. 

With very scanty data, there is one danger-that only a few different values 
of X2 are possible, so that the effects of discontinuity become noticeable. For ex- 
ample, consider the 2 X 4 contingency table with marginal totals shown below. 
All expectations are exactly 2. 

8 
8 

4 4 4 4 16 

If we construct all tables which satisfy these marginal totals, only seven different 
values of X2 are found. The exact distribution of X2 and the x2 approximation 
(with 3 degrees of freedom) are shown in Table 2. The agreement is not good, 
the tabular P's being fairly consistently too low. 

With such a small number of values of X2, a correction for continuity comes 
to mind. To apply this for X2 = 2, we read the x2 table at x2 = 1, this being 
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half way between 2 and 0 (the next largest value of X2). The corrected P's 
show a considerable improvement in fit. 

In practice, a small table of this kind can be handled by computing the exact 
distribution of X2 in cases of doubt about the adequacy of the x2 approxima- 
tion. For more complex contingency tables, a systematic method of computa- 
tion has been given by Freeman and Halton [25]. 

TABLE 2 
Exact distribution of X2 for a 2 X 4 contingency table. P{X2 X0} 

X2 Exact x2bTable Corrected 

0 1.000 1.000 1.000 
2 .899 .572 .801 
4 .362 .261 .391 
6 .243 .112 .172 
8 .064 .046 .072 

10 .030 .019 .029 
16 .0005 .0011 .004 

(iv) Tests in which all expectations are small and X2 has many degrees of free- 
dom (say >60). Examples occur in genetical research. The data are presented 
in, say, a 2 X 200 contingency table, with all 400 expectations small. 

In this case, the exact distributions of X2 and x2 are both approximately 
normal, since the degrees of freedom are large. However, the two distributions 
have different variances, and the normal approximation to the exact distribution 
is sometimes quite different from the normal approximation to x2. 

This problem has been studied by Haldane [26], [27] who has worked out the 
exact mean and variance of X2 for several types of data. His results are given 
below for the two cases that are perhaps most common. 

(a) We have g groups, each containing s individuals, classified into one of 
two classes. The null hypothesis specifies a known constant probability p that 
any individual falls into the first class. If xi individuals fall into this class in 
the ith group, and if we wish to test against the alternative that p varies from 
class to class, a familiar extension of the X2 test is to calculate 

X = (xX . sp)2 
i=1 spq 

with g degrees of freedom. Haldane shows that 

E(X2) = g, 

V(X2) = 2g (1 + 1 - 
6p)I 
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(b) Same data, but X2 computed as for a 2 X g contingency table, since p is 
unknown. 

na 

I s s *~~~8 n 

Then 

E(X2) (g - 1)n 

x2 2(g-1)n8 (n-g) (n -1) 
V(X ) =(n - 1)2(n - 2)(n - 3) flnln2J 

To take an extreme case, suppose s = 2, g = 160, n = 320, ni = 64, n2 = 256. 
The mean and variance of X2 are 159.5 and 159.4 respectively, whereas x2 has 
mean 159 and variance 318, twice as large. The normal approximation to X2 is 
satisfactory, but x2 gives very poor agreement [23]. In practice, such data may 
be dealt with by use of the normal approximation to the exact distribution, 
using Haldane's expressions for the mean and variance. 

The question remains: where does case (iii) shade into case (iv)? The available 
data suggest that case (iii) may apply when X2 has less than 15 degrees of free- 
don, while case (iv) may hold if X2 has more than 60 degrees of freedom. The 
intervening gap needs investigation. 

8. The correction for continuity. The exact distribution of X2 is always dis- 
continuous. When all expectations are small, the niimber of distinct values of 

may be very limited. In such cases the x2 table may give a poor approxima- 
tion to the exact P {X2 > X2 }, mainly because the area of a continuous curve is 
used to approximate the sum of a small number of discrete probabilities. The 
correction for continuity, introduced by Yates [28], is an attempt to remove 
this source of error. It amounts to reading the x2 table, not at the point X0 
but at a point halfway between X2 and the value of X2 immediately below Xo2 
in the discrete series of values. 

In practice, the correction is seldom needed except when X2 has 1 degree of 
freedom, as when testing a single binomial ratio or a 2 X 2 contingency table. 
In the 2 X 2 table there are various ways of computing the correction, de- 
pending on how one likes to compute X2. My own preference is to find the 
difference d between xi and mi, which is the same, apart from sign, in all four 
cells. The absolute value of d is reduced by 2, and X2 is computed as 

X2= (jdj - 
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Note that in the 2 X 2 table it is X that is corrected for continuity, not X2, 
since the successive values of d differ by unity. 

When X2 has 1 degree of freedom, a good rule is to apply the correction 
whenever it produces any apprecipble difference in the significance probability. 
The correction has a tendency to over-correct, changing the tabular P from 
too small to too large, but is usually an improvement. 

If a number of X2 values, each with 1 degree of freedom, are added to form 
a total X2, the individual X2 values should not be corrected for continuity, 
because the over-correction mounts up in a disconcerting manner [19]. After 
it has been obtained, the total X2 is corrected, if this is necessary, by the method 
given in the following paragraph. 

Compute the next largest value of X2 which the structure of the data permits. 
Read the x2 table at a point halfway between this value and the observed X2. 
This procedure was illustrated for a 2 X 4 table in the preceding section. Some- 
times the next largest value of X2 is not immediately obvious and trial and error 
is required to find it. 

9. The construction of classes. When X2 is used to test the hypothesis 
that the observations follow a continuous frequency distribution, the first step 
is to group the observations into classes. Both the number of classes and the 
division points between classes are at the disposal of the investigator, and the 
choices that he makes will affect the sensitivity of the test. I believe that the 
common practice is to have a moderate number of classes, say between 10 and 
25, and to make the class intervals equal. Although information about the best 
rule for constructing the classes is still meager, the recommendations of those 
who have looked into this problem are contrary to current practice. 

With regard to class intervals, Mann and Wald [29] and Gumbel [30] suggest 
that these be chosen so that the expected number is the same (= n/k) in all 
classes. These authors do not claim that this will increase the power of the 
test, but merely suggest that it is likely to be a good procedure. Gumbel points 
out that if this method is used in conjunction with a rule for choosing the value 
of k, much of the arbitrariness that accompanies the construction of class 
intervals is removed. Under this method, the computational steps are first to 
estimate the constants (mean, s.d., etc.) which determine the fitted curve, then 
find the class boundaries which give equal expectations in each class, and finally 
count the observed numbers xi which fall in the respective classes. The value of 
X2 is given as 

X2 = k 3A - n. n 

The paper by Mann and Wald deals with the choice of the number of classes, 
k. The null hypothesis is assumed to specify the distribution completely, and n 
is- assumed large enough so that the limiting x2 distribution is applicable. 

Some criterion is required to define what is meant by a "best" value of k. 
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It seems natural to try to maximize some property of the power function of the 
test. The criterion set up by Mann and Wald is a little complex to describe, 
but this stems from the complexity of the problem. 

They define the distance A between the null distribution and any alternative 
distribution as the maximum difference between the heights of the two cumu- 
lative distribution functions. It becomes evident, after some examination of the 
problem, that there is no hope of choosing k so as to maximize the power function 
of X2 at all points along its course. They decide to concentrate on maximizing 
the power at about the point where the power is 4. This is an arbitrary but 
reasonable choice. The two principal properties possessed by their "best" k 
are as follows. 

(i) For a value of A which they determine, the power of the X2 test is at 
least 4 for all alternative distributions whose distance from the null distribution 
is at least A. This value A is a simple function of sample size and, as would be 
expected, it decreases steadily with increasing sample size. 

(ii) If any k other than the "best" is chosen, the. power of X2 is less than 2 

for at least one alternative whose distance from the null distribution exceeds A. 
The best k is given by the formula 

2 4[(n -1) 2] ko = 4 [2( 
c2 

where 

27r e-(z22 dx = a, 

where a is the significance level. Thus c = 1.64 for a test at the 5% level. 
The optimum values of k are substantially higher than those customary in 

practice. For a test at the 5% level, k rises slowly from 31 at n = 200 to 78 at 
n = 2,000. 

TABLE 3 
Optimum number of classes (Mann and Wald) 

n 200 400 600 800 1,000 1,500 2,000 
k 31 41 48 54 59 70 78 

A good exposition and critique of the Mann-Wald paper has been given by 
Williams [31]. The Mann-Wald method is more tedious to compute than the 
usual procedure, partly because of the increased number of classes and partly 
because of the fitting with equal expected numbers. Williams shows, however, 
that the optimum is a broad one, and that the value of k in Table 3 can probably 
be halved with little loss in sensitivity. 

The Mann-Wald paper, although an able performance in a difficult field, is 
far from a complete investigation of the optimum number of classes. Such an 
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investigation is unlikely to be forthcoming soon. What is the user of the X2 
test to conclude from their results? My own reaction has been to put more 
computational work into X2 tests of continuous distributions, by increasing the 
number of intervals and using unequal lengths of interval where this is neces- 
sary in order to avoid classes with high expected numbers. For sample sizes 
between 200 and 1000, their recommended expected numbers per class in 
Table 3 range from 6 to 16. With Williams' modification, the range is from 12 
to 32. This does suggest that there is an appreciable loss of power if classes with 
expectations of more than 50 are commonly used. 

10. Summary recommendations. The following is an attempt to set down in 
brief forin the recommendations about the computation of X2 which flow from 
the discussion in this part and from practical experience. The recommendations 
are not as explicit as I should like. They can, I believe, be made more explicit, but 
this requires detailed study that goes beyond the scope of the present paper. The 
total number of observations is n. 

I. Attribute data. The data come to us in grouped form. Pooling of classes is 
considered undesirable because of loss of power. 

(a) The 2 X 2 table. Use Fisher's exact test (i) if n < 20, (ii) if 20 < n < 40 
and the smallest expectation is less than 5. Mainland's tables [20] are helpful 
in all such cases. If n > 40, use X2, corrected for continuity if the smallest 
expectation is less than 500. 

(b) Tables with degrees of freedom between 2 and 60 and all expectations less 
than 5. If n is so small that Fisher's exact test can be computed without ex- 
cessive labor, use this. Otherwise use X2, considering whether this needs cor- 
rection for continuity by finding the next largest value of X2. 

(c) Tables with degrees of freectom greater than 60 and all expectations less 
than 5. Try to 6btain the exact mean and variance of X2 and use the normal 
approximation to the exact distribution. 

(d) Tables with more than 1 degree of freedom and some expectations greater 
than 5. Use X2 without correction for continuity. 

II. Continuous data. The data must first be grouped. Use enough cells to 
keep the expectations down to the levels recommended by Williams (12 per 
cell for n = 200, 20 per cell for n = 400, 30 per cell for n = 1,000). At the tails, 
pool (if necessary) so that the minimum expectation is 1. 

PART III. UTILITY OF THE TEST 

11. Criticisms and limitations of the test. A competent appraisal of the utility 
of the X2 test would require a sampling survey of scientists and others who try 
to draw conclusions from data. In such a survey the object would be to discover 
how frequently these workers have occasion to use a X2 test, and to what extent 
the application of the test really seems to help them. In fact, such a survey, di- 
rected at the use of statistical techniques in general and not merely at the X2 
test, might be very illuminating to statisticians if it could be carried out despite 
the obvious difficulties. Statisticians are, I think, rather quick to jump to con- 
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clusions about the kinds of problems which scientists in other fields are supposed 
to face, and about their presumed uses and misuses of statistical methods and 
ideas. 

In the absence of survey data of this kind, the statistician can give only a 
personal opinion, based on such contacts as he has had with the users of the X2 
test. I will content myself with the cautious statement that since the construction 
of hypotheses and their continued modification or rejection in the light of new 
data is one of the standard tools of science, some kind of test of the agreement 
between theory and data must often be useful. The experiences of Airy and 
Merriman illustrate the uncomfortable position in which the scientist is placed 
when he has to state, without the benefit of such a test, whether his observations 
are in accordance with the predictions of some theory. 

On the other hand, a reading of the literature reveals the opinion, expressed 
by several writers, that the X2 test is of restricted usefulness. The reasons for this 
critical verdict seem to be diverse. Some of the criticism is directed at the X2 test 
itself, but some seems to apply to composite, or "general purpose" tests of sig- 
nificance as a whole, and some to alt tests of significance. 

Considering first the criticisms of X2 itself, the name "goodness of fit" is mis- 
leading, because the power of the test to detect an underlying disagreement be- 
tween theory and data is controlled largely by the size of the sample. With a 
small sample, an alternative hypothesis which departs violently from the null 
hypothesis may still have a small probability of yielding a significant value of X2. 
In a very large sample, small and unimportant departures from the null hypoth- 
esis are almost certain to be detected. Consequently, when X2 is nonsignificant, 
the amount by which the null hypothesis has been strengthened depends mainly 
on the size of sample. This is one of the principal reasons for such misuse of the 
test as exists. Authors sometimes write as if the validity of their null hypothesis 
has been greatly strengthened, if not definitely established, by a goodness of fit 
test made on very scanty data. 

Secondly, as Gumbel has pointed out, the X2 test for a continuous frequency 
distribution is not unique, because of the freedom of choice of number of intervals 
and end-points of the intervals. Although this is an argument for more standardi- 
zation in the application of the test, the objection perhaps is minor rather than 
major. At least, statisticians have not seen any overwhelming advantage in hav- 
ing just one test of a given null hypothesis against a given alternative. In recent 
years there has been active research in the development of quick, though ineffi- 
cient, tests for problems in which satisfactory, but less speedy, tests already 
exist. The tests will give different values of P from the same data, but no serious 
objections to this situation seem to have been noticed. 

There are two available substitute tests which resemble the X2 test in that 
they are not directed against any specific alternative. One is the co2 test (Section 
13). This was constructed in order to avoid the grouping of continuous data that 
is necessary with X2. The other, for data that are in grouped form, is the likeli- 
hood ratio test against a completely general alternative hypothesis (Section 14). 

One limitation of X2, or of any nonspecific test, is that when the alternative 
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hypotheses can be fairly clearly defined, we may hope to obtain another test, 
directed against these alternatives, that will be more powerful than X2. An 
example is Neyman's "smooth" tests (Section 15). These were constructed to 
detect alternative hypotheses that depart from the null hypothesis in some 
continuous or smooth fashion. Like X2, the smooth tests are still general, since 
they do not demand detailed knowledge of the nature of the alternatives. Further 
down the scale there is a variety of supplementary tests to X2. 

Finally, the X2 test is sometimes used when what is needed is not a test of sig- 
nificance of the usual type. There are numerous occasions when the null hypo- 
thesis is not expected to be exactly true, but at best approximately true. The 
argument against X2 in this situation has been developed amusingly by Berkson 
[32]. He writes "I make the following dogmatic statement, referring for illustra- 
tion to the normal curve: 'If the normal curve is fitted to a body of data repre- 
senting any real observations whatever of quantities in the physical world, then 
if the number of observations is extremely large-for instance, on the order of 
200,000-the chi-square P will be small beyond any usual limit of significance."' 

If this statement is granted-and counter-evidence, to put it mildly, is not 
abundant-then Berkson proceeds to the Socratic conclusion. What is the point 
of applying a X2 test to a moderate or small sample if we already know that a 
large sample would show P highly significant? 

In his original paper, Karl Pearson was aware of this issue, and did not seem 
to feel uncomfortable about it. He writes, "Nor again does it appear to follow 
that if the number be largely increased the same curve will still be a good fit. 
Roughly the x2's of two samples appear to vary for the same grouping as their 
total contents. Hence if a curve be a good fit for a large sample, it will be good 
for a small one, but the converse is not true, and a larger sample may show that 
our theoretical frequency gives only an approximate law for samples of a certain 
size. In practice we must attempt to obtain a good fitting frequency for such 
groupings as are customary or utile. To ascertain the ultimate law of distribution 
of a population for any groupings, however small, seems a counsel of perfection." 
Although it is hazardous to try to read another man's mind, his attitude was ap- 
parently the defensible one that any theory is at best approximately true, but 
nevertheless, if we are going to reject a theory, we do so because it does not fit 
the data that we have, not because it would not fit a much larger sample of data 
that we do not have. 

Nevertheless, I would agree with Berkson that in this situation an ordinary 
test of significance is not very useful. It is more difficult to say just what we do 
want. One attack would be to reformulate the null hypothesis so that, instead 
of testing whether a binomial p equals po , we try to construct a test of the null 
hypothesis that p lies in the specified range po, pi. 

As an alternative approach, fiducial or confidence limits seem to be helpful. 
Suppose that these limits are set up for the difference between two percentages 
in a 2 X 2 contingency table, the ordinary null hypothesis being that the true 
difference is zero. If the two limits are far from zero, then even when x2 is non- 
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significant we are warned that the data do not establish the null hypothesis as 
approximately true. If the limits are both near zero, on the other hand, we may 
be able to conclude that the null hypothesis, although presumably not exactly 
true, is close enough to the correct hypothesis for all practical purposes. 

In testing goodness of fit of a frequency distribution, the extension of this ap- 
proach is Kolmogorov's method [33] for constructing confidence bounds for the 
cumulative frequency distribution, given a sample. 

To summarize, the X2 test is helpful primarily in the exploratory stages of an 
investigation, when there is no very clear knowledge of the alternative hy- 
potheses. It is well to remember that the size of sample determines whether 
the test really is a severe test of the null hypothesis. 

12. Interpretation of high P's. The question of the interpretation to be placed 
on very high P's, say those greater than 0.99, has been raised from time to time. 
In the few instances of this kind that have come my way, my practice has been 
to give the data further scrutiny before regarding the result as evidence in favor 
of the null hypothesis. 

Events have justified this practice. In nearly every instance, something wrong 
was discovered, most frequently a numerical mistake or an error in the formula 
used to compute X2. In one set of data assembled by geneticists, a whole group 
of X2 showed P's of the order of 0.999. The reason was that these X2 values had 
been obtained by adding a large number of X2 values, each with 1 degree of 
freedom, and all the original (1 d.f.) X2 had been corrected for continuity. The 
over-correction which is a feature of this device had piled up to such an extent 
that their total X2's were much smaller than those following the x2 distribution. 
In another case, after discussion with the assistants of the scientist in charge, I 
surmised that the observations had been influenced by the anticipations of the 
scientist. Fisher [34] has raised a similar speculation with respect to some of 
Mendel's results, without any suggestion of improper scientific conduct on the 
part of Mendel. 

PART IV. TESTS WHICH ARE COMPETITIVE TO X2 

13. The 02 test. Alternatives that have been proposed to the X2 test are of 
two kinds. Several of the tests, like X2, are "general" tests. Then there is a bat- 
tery of supplementary tests that are intended for situations where the alternative 
hypothesis is more definitely known. 

The general substitute tests that have been proposed have not given X2 very 
serious competition. This is understandable because of the long history of X2 and 
of its inclusion as standard doctrine in most elementary courses, and because 
some of the substitute tests are limited in the type of hypothesis with which they 
can cope. Moreover, despite the weaknesses of the X2 test discussed in Part III, 
the advantages of the alternative tests have not yet been clearly enough demon- 
strated to win many converts. Consequently, Part IV contains only a brief and 
rather noncommital introduction to these tests. 
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The first general test, developed by Cram6r [35], von Mises [36] and Smirnov 
[37], was constructed mainly for use with small samples. The null hypothesis 
completely specifies the frequency distribution followed by the observations. 
Unlike X2, the W2 test requires no grouping of the observations, an obvious ad- 
vantage with small samples. The test is based on a comparison of the cumulative 
frequency function F(x) specified by the null hypothesis with an estimate of the 
cumulative frequency made from the sample. This estimate, F*(x), is simply r/n, 
where r is the number of observations in the sample which are <x. The test 
criterion proposed is the Stieltjes integral 

= i : [F(x) - F*(x)]2 dF(x). 
00 

If F(x) is continuous, this may be shown to satisfy 
n 2r 12 

C2 + 1ZE F(r -__r- 

12n2 + _ LL[F(r) 2n ] 
where the values xi, x2, *. , xn are now arranged in increasing order. 

The mean and variance of w2 are known, and also its limiting distribution 
(which is nonnormal) as n -* o. A table of this distribution by Darling and 
Anderson [38] has appeared recently. Practical use of this test is restricted by 
the condition that F(x) must be known and by lack of information about the 
small-sample distribution of w2. 

14. The likelihood ratio test. If the data are presented in grouped form, and 
if the alternative hypothesis is completely general, it is known that in large 
samples the X2 test and the likelihood ratio test become equivalent [9]. We start 
from the usual multinomial 

n I xi X2 . Xk Pr- =l! .. XkP1P2 ***Pk. 

The likelihood on the null hypothesis is found from pi = mi/n, where mi are 
the expectations estimated by maximum likelihood (unless they are explicitly 
given). The likelihood on the unrestricted alternative is found from pi xi/n. 
Hence the likelihood ratio becomes 

(xl )x1 (2)2 (k. 

Its logarithm is 

L = x log - = E xi log I + 
M=1 ms =1 mi 

When this is expanded in a power series in the (xi - mi), the leading term is 
X2 for the maximum likelihood estimates of the parameters. 

In view of the equivalence of the two criteria in large samples, there seems 
no advantage, except one of taste or convenience, in one test over the other. 
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For small samples, the suggestion has been made from time to time that the 
likelihood ratio is to be preferred. Examples worked by both tests have been 
presented and discussed by Neyman and Pearson [22] and Fisher [39]. Since 
users of statistical methods naturally do not wish to learn more tests than are 
necessary, a movement to replace X2 by the likelihood ratio seems unlikely to 
gather momentum unless some definite advantages can be shown to follow. 
The advantage in computing time is at most small, but there may be an increase 
in power. The striking way in which many different configurations of the data 
turn out to give exactly the same value of X2 in small samples suggests an element 
of coarseness in the X2 test. This coalescence happens to a much reduced extent 
with the likelihood ratio. However, not enough data about relative power has 
accumulated to permit a verdict on this issue. 

15. Neyman's smooth tests. As in the W2 test, Neyman [40] postulates that 
the cumulative frequency F(x) (assumed continuous) is known exactly from the 
null hypothesis. The first step is to replace the observations xi by the familiar 
"probability integral" transforms y , where 

yi = F(x1). 

If the null hypothesis is correct, the variates yi follow a rectangular distribution 
in the interval (0, 1). The problem, therefore, reduces to that of finding a test 
for this transformed hypothesis. 

Neyman points out that the conceivable alternatives to the null hypothesis 
fall into two broad classes. The first class, of "smooth" alternatives, contains 
frequency functions which are continuous and which depart in some gradual 
and regular manner from the null hypothesis. The second class contains all 
other alternatives, whose deviation from the null hypothesis is in some respects 
erratic or discontinuous. The X2 test is not directed specifically at either class, 
and is to some extent effective against both types of departure from the null 
hypothesis. Neyman's object is to develop tests sensitive to the first class of 
alternatives. 

If a "smooth" alternative holds, the transforms yi will no longer follow a 
rectangular distribution, but will presumably follow a continuous distribution 
with a limited number of maxima and minima. The proposal is, therefore, to 
test the yi for polynomial trends, on the assumption that a polynomial of fairly 
small degree will satisfactorily represent the smooth alternative. The computa- 
tions involved and a discussion of the appropriate degree of the polynomial are 
presented in [40]. 

PART V. TESTS WHIcH ARE SUPPLEMENTARY TO X2 

16. A supplementary test based on runs. X2 takes no account of the succession 
of + and - signs in the deviations (xi - mi) between observations and expecta- 
tions. When a smooth alternative holds, it seems likely that the succession of 
signs will exhibit some systematic features, such as a long run of +'s followed 
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by a run of -'s, and this has often been observed in applications of X2. David 
[41] has adapted the now familiar "run" test as a supplementary test to X2. 
In the run test, we count the number of runs and refer to a table which shows 
the significance levels of this quantity; given the total numbers of +'s and 
-'s in the series. David has shown that the limiting distribution of the number 
of runs is independent of that of X2. 

The run tests will, of course, be most effective for alternatives which produce 
few runs, such as a shift in the mean of the distribution. In the reference cited, 
the test is restricted to the case where the null hypothesis completely specifies 
the distribution; David states that a test has been developed for the case in 
which some parameters must be estimated. 

17. Tests based on low moments. When the null hypothesis postulates that 
the observations follow a normal, binomial or Poisson distribution, an alterna- 
tive to X2 that is in fairly common use is to compare the lower moments of the 
theoretical distribution with estimated moments from the sample. With the 
normal distribution, the actual values of the mean and variance are rarely given 
by the null hypothesis, so that a comparison of these moments is not usually 
possible. Tests of skewness, derived from the third moment, and of kurtosis, 
derived from the fourth moment, can be made [15]. 

In the binomial distribution, if p is specified we can compare the sample mean 
and variance with the theoretical mean and variance. If p is not specified, we 
can compare variances. Suppose that we have g series of trials, and that each 
series contains s trials. The number of successes (out of s) in the ith trial is xi. 
For a test of the mean proportion of successes, we regard 

/dsq 

as a normal deviate. 

18. Dispersion tests. Turning to the variance of xi, if p is specified the esti- 
mated variance is E (xi - sp)2/g, while the theoretical variance is spq. An 
appropriate test criterion for the variance is, therefore, 

X (Xi _. Sp)2 
gspq 

If p must be estimated from the data, either because it is unspecified or 
because the sample estimate disagrees with the postulated p, the test criterion 
becomes 

E(Xi-X2 s E: (zXi )2 

g. 
g.( 

w 

, \ , 
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As is well known, the related quantities 

(13) E(xi-Sp)2 and s E (X-_x)2 
spq n(s-x) 

are distributed approximately as x2 with g and (g - 1) degrees of freedom, 
respectively, when the null hypothesis is true. 

The variance test can also be made when the number of trials si varies from 
series to series. The test criterion becomes 

(x -X)-2 2 ( <X)2 

(1~~~~~ - -) xsx) 

This test criterion can be shown to be identical with X2 as calculated for the 
2 X g contingency table. 

X1 X2 . . . Xg EXi 
SI- X1 S2-X2 . . . Sg - Xgi Esi- EXi 

Si S2 Sg ES; 

It is important to distinguish clearly between this variance X2 test, which is 
sometimes called a dispersion test, and the ordinary goodness of fit X2 test. 
Suppose that we have 200 families each of size 4, and that every individual 
belongs to one of two classes A and a. The null hypothesis states that the 
probability p of an A is constant for all families. We may tally the numbers of 
families that have 0, 1, 2, 3, 4 A's, respectively, and test this frequency distri- 
bution against the binomial (q + p)4. This is the ordinary goodness of fit test, 
which has 3 degrees of freedom if p is unknown. The dispersion test, computed 
by formula (13), compares the observed variance of this frequency distribution 
with the theoretical binomial variance. 

The dispersion tests frequently prove more sensitive than X2 when the bi- 
nomial null hypothesis fails because the probability 'of an A varies from one 
family to another. The notion of a measure of dispersion of this kind is due to 
Lexis and antedates the goodness of fit test. 

19. Subdivision of X2 into components. In the analysis of variance, the sub- 
division of a sum of squares into single components, or "single degrees of free- 
dom," is a familiar device. If variates yi are normally and independently dis- 
tributed with mean 0 and variance 2 on some null hypothesis, these components 
are obtained by any linear transformation of the form 

zi= E I4 Y, (i = 1, 2, ... k) 
j,=1 
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where 

(14) E li = {h i 
I 1i, ii= h. 

All zi are normally and independently distributed with mean 0 and variance 
o2. This transformation enables us to select those zi that are likely to be sensitive 
to a particular alternative hypothesis. Often only one or two of the zi are ex- 
amined, because it is hard to imagine any feasible alternative that would make 
the other z's large. Thus the device replaces a "sum of squares" test by a few 
more specialized tests. 

The corresponding subdivision of x2 is easily obtained from Fisher's device 
of regarding the observed numbers xi in the cells as following independent 
Poisson distributions, subject to a single linear restrietion. Thus when all ex- 
pectations are large, we may take 

XJi - 
M 

as the set of unit normal deviates. Since these are subject to the linear restriction 
k k 

E (xj - mi) = x\ v; yj = 0, 
j=1 I-1 

we must take 

Zi = E vW yi/n. 
Let the remaining Zi (i = 2, 3, * k) be 

Zi = El' E = X4 VM y1 + E 4my. 

If these are to have means zero, we must have 

(15) E I'f1i = 0. 

Note that this relation makes all the remaining Zi orthogonal with Z1. Since 
iij = &?j Nj equations (14) become 

Jo i hi 
(16) tL i thi=Mi = 

i ~~~1 i h. 

Any set of Z5 whose coefficients satisfy equations (15) and (16) provide a 
breakdown of X2 into (k - 1) single components. Then as an algebraic identity, 

X2 
I 

(X. - npi)2 k-1 

i=1 np' f1 
As n increases, the individual terms on the right become in the limit 
independently distributed as x2 with 1 degree of freedom. In genetic analysis, 
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where simple interpretations can be attached to the Zi , this tool has proved 
useful [151. 

The application of this breakdown to contingency tables, which requires 
care, has been elucidated by Lancaster [42] and Irwin [43]. In an r X c con- 
tingency table, X2 can be partitioned into (r - 1)(c - 1) single components. 
Each of these represents the usual X2 for a 2 X 2 table which is formed by 
amalgamation of cells in the original table. This breakdown is illustrated below 
for a 3 X 3 table. 

Original table 

Xii X12 X13 ri 
X21 X22 X23 r2 
X31 X32 X33 rs 

el C2 C3 n 

Components 

Xii X12 | r12 r12 X13 ri 
X21 X22 r22 r22 X23 r2 

C21 C22 n22 n22 C23 n23 

C21 C22 n22 n22 C23 I n23 
X3i X32 r32 r32 X33 r3 

Cl C2 n32 n32 C3 n 

If the X2 are calculated in the usual way for each 2 X 2 table, the partition 
is only approximate, in that in finite samples the individual X2 do not add up 
to the total X2 for the 3 X 3 table. The authors show how to obtain a partition 
which adds up exactly, that is, which satisfies the sets of equations (15) and 
(16). It appears that the approximate partition is adequate for most tests of 
significance; in fact, it has not been shown that the additive partition is really 
preferable to the approximate partition in small samples. 

Another application of the breakdown of X2 is to contingency tables in which 
numerical scores can be attached to one or both of the classifications. Yates 
[44] shows how to isolate and compare the regressions of the observations on 
these scores. 

In conclusion, the testing of individual components of X2 is analogous to the 
use of a set of independent t-tests instead of, or in addition to, an F-test in the 
analysis of variance. 

I wish to thank T. W. Anderson, E. L. Lehmann and J. W. Tukey for many 
helpful suggestions. 
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