University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Homework 10

EXERCISE 1

A coin is thrown independently 10 times to test that the probability of heads is $\frac{1}{2}$ against the alternative that the probability is not $\frac{1}{2}$. The test rejects H_0 if either 0 or 10 heads are observed.

- a. What is the significance level α of the test?
- b. If in fact the probability of heads is 0.1, what is the power of the test?

EXERCISE 2

The output voltage of a certain electric circuit is specified to be 130 volts. The population standard deviation is known to be $\sigma = 3.0$ volts. A sample of 40 readings on the voltage of this circuit gave a sample mean of 128.6 volts.

- a. Test the hypothesis that the mean output voltage is 130 volts against the alternative that it is less than 130 volts. Use $\alpha = 0.05$.
- b. Based on your answer to (a), is it possible that the mean output voltage is still 130 volts? Explain.
- c. If the true population mean output voltage is 128.6 volts, compute the probability of a type II error (β) and the power of the test (1β) when $\alpha = 0.05$.
- d. For this part you do not have to show any calculations. How would the type II error β be affected if:
 - i. The type I error α decreases to 0.01?
 - ii. The true population mean is 129.6 volts?

EXERCISE 3

Answer the following questions:

a. The lifetime of certain batteries are supposed to have a variance of 150 hours². Using $\alpha = 0.05$ test the following hypothesis

 $H_0: \sigma^2 = 150$

 $H_a:\sigma^2>150$

if the lifetimes of 15 of these batteries (which constitutes a random sample from a normal population) have:

$$\sum_{i=1}^{15} x_i = 250, \quad \sum_{i=1}^{15} x_i^2 = 8000.$$

where X denotes the lifetime of a battery.

b. A confidence interval is *unbiased* if the expected value of the interval midpoint is equal to the estimated parameter. For example the midpoint of the interval $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ is \bar{x} , and $E(\bar{x}) = \mu$. Now consider the confidence interval for σ^2 . Show that the expected value of the midpoint of this confidence interval is not equal to σ^2 .

EXERCISE 4

Let X be a uniform random variable on $(0, \theta)$. You have exactly one observation from this distribution and you want to test the null hypothesis $H_0: \theta = 10$ against the alternative $H_a: \theta > 10$, and you want to use significance level $\alpha = 0.10$. Two testing procedures are being considered: Procedure G rejects H_0 if and only if $X \ge 9$.

Procedure K rejects H_0 if either $X \ge 9.5$ or if $X \le 0.5$.

- a. Confirm that Procedure G has a Type I error probability of 0.10.
- b. Confirm that Procedure K has a Type I error probability of 0.10.
- c. Find the power of Procedure G when $\theta = 12$.
- d. Find the power of Procedure K when $\theta = 12$.

EXERCISE 5

Suppose that the length in millimeters of metal fibers produced by a certain process follow the normal distribution with mean μ and standard deviation σ (both are unknown). We will test: $H_0: \mu = 5.2$ $H_a: \mu \neq 5.2$ A sample size of n = 15 metal fibers was selected and was found that $\bar{x} = 5.4$ and s = 0.4266.

- a. Approximate the p-value using only your t table and use it to test this hypothesis. Assume $\alpha = 0.05$.
- b. Assume now that the population standard deviation is known and it is equal to $\sigma = 0.4266$. Compute the power of the test when the actual mean is $\mu_a = 5.35$ and you can accept $\alpha = 0.05$.
- c. On the previous page draw the two distributions (under H_0 and under H_a) and show the Type I error and the Type II error on them.
- d. Assume now that the hypothesis we are testing is

 $H_0: \mu = 5.2$ $H_a: \mu > 5.2$

Determine the sample size needed in order to detect with probability 95% a shift from $\mu_0 = 5.2$ to $\mu_a = 5.3$ if you are willing to accept a Type I error $\alpha = 0.05$. Assume $\sigma = 0.4266$.