Statistics 100B Instructor: Nicolas Christou

Homework 9 - Solutions

Exercise 1

The confidence interval for the ratio of two normal population variances $\frac{\sigma_1^2}{\sigma_2^2}$ is:

$$\frac{s_1^2}{s_2^2}\frac{1}{F_{1-\frac{\alpha}{2};n_1-1,n_2-1}} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \frac{s_1^2}{s_2^2}F_{1-\frac{\alpha}{2};n_2-1,n_1-1}.$$

In the above confidence interval, s_1^2 and s_2^2 are the sample variances based on two independent samples of size n_1, n_2 selected from two normal populations $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$. Here we use the result

$$\frac{\frac{s_1^2}{\sigma_1^2}}{\frac{s_2^2}{\sigma_2^2}} \sim F_{n_1-1,n_2-1}.$$

Exercise 2 We start by finding the distribution of $X_p - \bar{X}$. $E(X_p - \bar{X}) = 0$ and $Var(X_p - \bar{X}) = \sigma^2(1 + \frac{1}{n})$. The distribution of $X_p - \bar{X}$ is:

$$X_p - \bar{X} \sim N(0, \sigma \sqrt{1 + \frac{1}{n}})$$

$$Z = \frac{X_p - \bar{X}}{\sigma \sqrt{1 + \frac{1}{n}}}$$

$$t = \frac{\frac{X_p - \bar{X}}{\sigma \sqrt{1 + \frac{1}{n}}}}{\sqrt{\frac{(n-1)s^2}{\sigma^2}}} \ \Rightarrow t = \frac{X_p - \bar{X}}{s\sqrt{1 + \frac{1}{n}}}.$$

Since the above ratio follows the t distribution with n-1 degrees of freedom the $1-\alpha$ prediction interval for X_p is:

$$P(-t_{\alpha/2;n-1} \le \frac{X_p - \bar{X}}{s\sqrt{1 + \frac{1}{n}}} \le t_{\alpha/2;n-1}) = 1 - \alpha$$

Or X_p will fall in $\bar{X} \pm t_{\alpha/2;n-1} s \sqrt{1 + \frac{1}{n}}$.

Exercise 3

We found earlier that $nI(\theta) = \frac{n}{\lambda}$, and the lower bound of the Cramér-Rao inequality is $\frac{\lambda}{n}$. Using the asymptotic properties of the maximum likelihood estimates the 95% confidence interval for λ is:

$$\bar{X} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\lambda}{n}} \text{ or } \bar{X} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}}{n}}$$

We replace λ with its mle estimate, $\hat{\lambda} = \bar{X}$. From the data we compute $\bar{x} = 24.9$, therefore the 95% confidence interval is:

$$24.9 \pm 1.96 \sqrt{\frac{24.9}{23}}$$
 or 24.9 ± 2.04

or $22.86 \le \lambda \le 26.94$.

Exercise 4

 $\bar{X} - \bar{Y} \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{\frac{1}{9}} + \frac{\sigma_2^2}{\frac{12}{12}}})$. Therefore we can write:

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{\frac{1}{\Omega}} + \frac{\sigma_2^2}{\frac{1}{12}}}}.$$

And since $\sigma_1^2 = 3\sigma_2^2$ we get:

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_2^2(\frac{3}{9} + \frac{1}{12})}}.$$

Now we need to define a χ^2 random variable. Because X and Y are independent we have:

$$\frac{(9-1)S_1^2}{\sigma_1^2} + \frac{(12-1)S_2^2}{\sigma_2^2} \sim \chi_{12+9-2}^2 \sim \chi_{19}^2.$$

Using again $\sigma_1^2 = 3\sigma_2^2$ we get:

$$\frac{\frac{1}{3}8S_1^2 + 11S_2^2}{\sigma_2^2} \sim \chi_{19}^2.$$

Now we can define a variable that has a t distribution as follows:

$$t = \frac{\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_2^2(\frac{3}{9} + \frac{1}{12})}}}{\sqrt{\frac{\frac{1}{3}8S_1^2 + 11S_2^2}{\sigma_2^2}}} \sim t_{19}$$

Finally we get:

$$t = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{3}8S_1^2 + 11S_2^2}} \frac{\sqrt{19}}{\sqrt{\frac{3}{9} + \frac{1}{12}}} = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{3}8S_1^2 + 11S_2^2}} \sqrt{\frac{228}{5}}.$$

We can use the above t_{19} random variable to construct a 95% confidence interval for $\mu_1 - \mu_2$. We want:

$$P(-t_{\frac{\alpha}{2};19} \le \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{3}8S_1^2 + 11S_2^2}} \sqrt{\frac{228}{5}} \le t_{\frac{\alpha}{2};19}) = 1 - \alpha.$$

After some manipulation we find that $\mu_1-\mu_2$ will fall in the following interval with 95% confidence:

$$\bar{X} - \bar{Y} \pm t_{\frac{\alpha}{2};19} \sqrt{\frac{8}{3}S_1^2 + 11S_2^2} \sqrt{\frac{5}{228}}.$$