University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Practice 4

EXERCISE 1

Suppose X_1, X_2, \dots, X_n is a random sample from Bernoulli(p).

a. Show that the mle of p is $\hat{p} = \frac{X}{n}$.

b. Show that the mle of part (a) attains the Cramer-Rao lower bound.

c. If n = 10 and X = 5, plot the log likelihood function.

EXERCISE 2

Suppose that X follows a geometric distribution

 $P(X = x) = p(1 - p)^{x-1}$

and assume an i.i.d. sample of size n. Find the mle of p.

EXERCISE 3

Given a random sample of size *n* from a population which has known mean μ and unknown variance σ^2 , show that $\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$ is an unbiased estimator of the true but unknown variance σ^2 .

EXERCISE 4

If X_1, X_2 and X_3 are a random sample from a normal population with mean μ and variance σ^2 , what is the relative efficiency of the estimator $\hat{\mu} = \frac{X_1 + 2X_2 + X_3}{4}$ with respect to the estimator $\bar{X} = \frac{X_1 + X_2 + X_3}{3}$.

EXERCISE 5

If \bar{X}_1 is the mean of a random sample of size n from $N \sim N(\mu, \sigma_1)$ and \bar{X}_2 is the mean of a random sample of size n from $N \sim N(\mu, \sigma_2)$, and the two samples are independent, show that

a. $w\bar{X}_1 + (1-w)\bar{X}_2$, where $0 \le w \le 1$, is an unbiased estimator of μ .

b. the variance of this estimator is minimum when $w = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

EXERCISE 6

If X_1, X_2, \dots, X_n are the values of a random sample of size *n* from a Poisson population with parameter λ , find an estimate of λ using the the method of maximum likelihood.

EXERCISE 7

If X has a binomial distributon with n trials and success probability p, show that $\frac{X}{n}$ is a consistent estimator of p.

EXERCISE 8

Suppose that X_1, X_2, \dots, X_n represents a random sample of size n from a normal population with mean μ and variance σ^2 . Show that $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is a consistent estimator of σ^2 . Hint: Can the χ^2 distribution help you in finding the variance of S^2 ?

EXERCISE 9

If X is binomial (n, p), then the variance of $\hat{p} = \frac{X}{n}$ (which is the maximum likelihood estimate of p) is $\sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$. This variance is often estimated by $\hat{\sigma}^2 = \frac{\hat{p}(1-\hat{p})}{n} = \frac{\frac{X}{n}(1-\frac{X}{n})}{n}$. Is this an unbiased estimator of $\sigma_{\hat{p}}^2$? If not find a constant c so that $c\hat{\sigma}^2$ is unbiased.

EXERCISE 10

The numbers w_1, w_2, \dots, w_n are known positive values. The random variables X_1, X_2, \dots, X_n are independent, and the distribution of X_i is $N(\mu, \frac{\sigma}{\sqrt{w_i}})$. Both parameters μ and σ are unknown. Find the maximum likelihood estimates of μ and σ^2 .

EXERCISE 11

Let X_1, X_2, \dots, X_n be an i.i.d. random sample from $N(\mu, \sigma)$.

a. Which of the following estimates is unbiased? Show all your work.

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n}, \quad S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n - 1}$$

b. Which of the estimates of part (a) has the smaller MSE?

EXERCISE 12

Let X_1, X_2, \dots, X_n be an i.i.d. random sample from a normal population with mean zero and unknown variance σ^2 .

- a. Find the maximum likelihood estimate of σ^2 .
- b. Show that the estimate of part (a) is unbiased estimator of σ^2 .
- c. Find the variance of the estimate of part (a). Is it consistent?
- d. Show that the variance of the estimate of part (a) is equal to the Cramer-Rao lower bound.