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EXERCISE 1
We know that X ∼ b(n, p).

a. The likelihood function is L(p) = px(1 − p)n−x and the log-likelihood lnL(p) = xlnp + (n − x)ln(1 − p). To find the
value of p that maximizes the log-likehood we differentiate the previous expression w.r.t. p and set it equal to zero:
∂lnL(p)
∂p

= x
p
− n−x

1−p = 0⇒ p̂ = x
n

.

b. We first find the variance of p̂. V ar(p̂) = V ar( x
n

) =
V ar(x)

n2 =
np(1−p)
n2 ⇒ V ar(p̂) =

p(1−p)
n

. Now we must show
that this is equal to the lower bound of the Cramer-Rao inequality. We need the second derivative of the log-pdf

function (Bernoulli function P (Y = y) = py(1 − p)1−y :
∂2lnf(y)

∂p2
= − y

p2
− 1−y

(1−p)2 . Therefore E(− ∂
2lnf(y)

∂p2
) =

− p
p2
− 1−p

(1−p)2 = − 1
p(1−p) . The Cramer-Rao inequality says that any unbiased estimator must have variance at least:

V ar(θ̂) ≥ 1

nE(− ∂
2lnf(y)

∂p2
)
. Therefore V ar(θ̂) ≥ 1

n
p(1−p)

=
p(1−p)
n

, which is the variance of p̂. Therefore the mle of p

attains the Cramer-Rao inequality.

c. When n = 10, X = 5 the log-likelihood function is lnL(p) = 5lnp+ (10− 5)ln(1− p). Place lnL(p) on the vertical axis
and p on the horizontal axis. Then compute lnL(p) for different values of p (try p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
You will see that the maximum of the log-likelihood function is found when p = 0.5 which is the mle p̂ = x

n
= 5

10
= 0.5.

EXERCISE 2

We need the likelihood fuction which is L(p) = pn(1−p)
∑n

i=1
xi−n. The log-likelihood is lnL(p) = nlnp+(

∑n

i=1
xi−n)ln(1−p)

and maximizing it w.r.t. p we get
∂lnL(p)
∂p

= n
p
−
∑n

i=1
xi−n

1−p = 0⇒ n
p

=

∑n

i=1
x1−n

1−p ⇒ p̂ = 1
x̄

.

EXERCISE 3
Since µ is known, the maximum likelihood estimator of σ2 is σ̂2 = 1

n

∑n

i=1
(xi − µ)2. Its expected value is E(σ̂2) =

E( 1
n

∑n

i=1
(xi − µ)2) = 1

n

∑n

i=1
E(xi − µ)2) = nσ2

n
= σ2. Therefore it is unbiased.

EXERCISE 4
We must first compute the variance of µ̂ and x̄. They are: V ar(µ̂) = V ar(x1+2x2+x3

4
) = 6σ2

16
and V ar(x̄) = σ2

3
. The relative

efficieny of µ̂ with respect to x̄ is x̄
µ̂

=
σ2

3
6σ2

16

= 8
9

.

EXERCISE 5
We are given X1 ∼ N(µ, σ1), andX2 ∼ N(µ, σ2). Also 0 ≤ w ≤ 1.

a. E(wx̄1 + (1− w)x̄2) = wE(x̄1) + (1− w)E(x̄2) = wµ+ (1− w)µ = µ.

b. We want to minimize the variance of wx̄1 + (1− w)x̄2.
minimize V ar(wx̄1 + (1− w)x̄2) w.r.t w

minimize w2 σ
2
1
n

+ (1− w)2 σ
2
2
n

w.r.t. w

Or 2w
σ2
1
n
− 2(1− w)

σ2
2
n

= 0⇒ wσ2
1 − (1− w)σ2

2 = 0⇒ w =
σ2
2

σ2
1
+σ2

2

.

EXERCISE 6
Find the mle of the parameter λ of the Poisson distribution:

The likelihood function is L(x1, · · · , xn;λ) = e−λnλ

∑n

i=1
xi

x1!···xn!
, and the log-likelihood function is lnL(x1, · · · , xn;λ) = −λn +∑n

i=1
x1lnλ− ln(x1! · · ·xn). We want to find the value of λ that maximizes the previous expression:

∂lnL
∂λ

= −n+

∑n

i=1
xi

λ
= 0⇒ λ̂ = x̄.

EXERCISE 7
We need to show that x

n
is unbiased estimator of p and that V ar( x

n
) = 0 as n→∞.

E( x
n

) = np
n

= p, so it is unbiased.

V ar( x
n

) =
np(1−p)
n2 =

p(1−p)
n

which is equal to zero as n→∞.
Therefore x

n
is a consistent estimator of p.



EXERCISE 8

We know that
(n−1)s2

σ2 ∼ χ2
n−1. We need to show that s2 is unbiased estimator of σ2 and that vars2 = 0 as n→∞.

E(
(n−1)s2

σ2 ) = n− 1⇒ Es2 = σ2 n−1
n−1

= σ2, so it is unbiased.

V ar(
(n−1)s2

σ2 ) = 2(n− 1)⇒ V ars2 =
2(n−1)

(n−1)2
σ4 ⇒ V ars2 = 2σ4

n−1
which is equal to zero as n→∞.

Therefore s2 is a consistent estimator of σ2.

EXERCISE 9

The esimate of p is p̂ = X
n

, and the estimate of σ2 is σ̂2 =
p̂(1−p̂)
n

=
X
n

(1−X
n

)

n
. To see whether σ̂2 is an unbiased estimator of

σ2 we need to find its expected value. We will need E(X) = np, and E(X2) = σ2 +µ2 = np(1− p) + (np)2 = np−np2 +n2p2.

E(σ̂2) = E

(
X
n

(1− X
n

)

n

)
=

E

(
X

n2
−
X2

n3

)
=

1

n2
E(X)−

1

n3
E(X2) =

1

n2
np−

1

n3
(np− np2 + n2p2) =

p

n
−

p

n2
+
p2

n2
−
p2

n
=

(
1

n
−

1

n2
)(p− p2) = (

1

n
−

1

n2
)p(1− p) ⇒

E(σ̂2) = (1−
1

n
)
p(1− p)

n
.

It is not unbiased but we can multiply it by the reciprocal of 1 − 1
n

which is n
n−1

to make it unbiased. Therefore, n
n−1

σ̂2 is

unbiased estimator of
p(1−p)
n

.

EXERCISE 10
We are given that Xi ∼ N(µ, σ√

wi
). The likelihood function of X1, X2, · · · , Xn is

L = (2πσ2)−
n
2 Πni=1

√
wi e

− 1
2σ2

∑n

i=1
wi(xi−µ)2

.

And the log-likelihood is

lnL = −
n

2
ln(2πσ2) + lnΠni=1

√
wi −

1

2σ2

n∑
i=1

wi(xi − µ)2.

First we find the mle of µ:

∂lnL

∂µ
=

n∑
i=1

wi(xi − µ) = 0⇒
n∑
i=1

wixi =

n∑
i=1

wiµ⇒ µ̂ =

∑n

i=1
wixi∑n

i=1
wi

.

Now the mle of σ2:

∂lnL

∂σ2
= −

n

2σ2
+

1

2σ4

n∑
i=1

wi(xi − µ)2 = 0⇒ n =
1

σ2

n∑
i=1

wi(xi − µ̂)2 ⇒ σ̂2 =
1

n

n∑
i=1

wi(xi − µ̂)2.

where µ̂ =

∑n

i=1
wixi∑n

i=1
wi

.

EXERCISE 11
Let X1, X2, · · · , Xn be an i.i.d. random sample from N(µ, σ).

a. Which of the following estimates is unbiased? Show all your work.

σ̂2 =

∑n

i=1
(Xi − X̄)2

n
, S2 =

∑n

i=1
(Xi − X̄)2

n− 1

Answer:
The sample variance (S2) is unbiased (please see class notes). The mle of σ2 is biased. We can write it as follows:

σ̂2 =

∑n

i=1
(Xi − X̄)2

n
=
σ2

n

(n− 1)S2

σ2
.

Therefore,

E(σ̂2) = E

(
σ2

n

(n− 1)S2

σ2

)
=
n− 1

n
σ2



b. Which of the estimates of part (a) has the smaller MSE? The MSE is equal to: MSE = V ar(θ̂) + B2. We need to

find the variance of each of the estimators. We have shown in class that V ar(S2) = 2σ4

n−1
. To find the variance of σ̂2:

V ar(σ̂2) = V ar

(
σ2

n

(n− 1)S2

σ2

)
=

2(n− 1)

n2
σ4.

The bias of S2 is zero (it s unbiased). Therefore,

MSE(S2) = V ar(S2) =
2σ4

n− 1
.

The bias of σ̂2 is equal to:

B = E(σ̂2)− σ2 =
n− 1

n
σ2 − σ2 = −

σ2

n
.

And its MSE s equal to:

MSE(σ̂2) = V ar(σ̂2) +B2 =
2(n− 1)

n2
σ4 +

σ4

n2
=

2n− 1

n2
σ4.

We can easily see that

MSE(σ̂2)

MSE(S2)
< 1



EXERCISE 12
Let X1, X2, · · · , Xn be an i.i.d. random sample from a normal population with mean zero and unknown variance σ2.

a. Find the maximum likelihood estimate of σ2.
Answer:

L = (2πσ2)−
n
2 e
− 1

2

∑n

i=1

x2
i
σ2

lnL = −
n

2
ln(2πσ2)−

1

2

n∑
i=1

x2
i

σ2

∂lnL

∂σ2
= −

n

2σ2
+

1

2σ4

n∑
i=1

x2
i = 0

Solve for σ2 to get: σ̂2 =

∑n

i=1
x2i

n
.

b. Show that the estimate of part (a) is unbiased estimator of σ2.
Answer:

E(σ̂2) = E

(∑n

i=1
x2
i

n

)
=
σ2

n
E

(
n∑
i=1

(
xi − 0

σ
)2

)
=
σ2

n
E(χ2

n) =
σ2

n
n = σ2.

c. Find the variance of the estimate of part (a). Is it consistent?
Answer:

V ar(σ̂2) = V ar

(∑n

i=1
x2
i

n

)
=
σ4

n2
V ar

(
n∑
i=1

(
xi − 0

σ
)2

)
=
σ4

n2
V ar(χ2

n) =
σ4

n2
2n =

2σ4

n
.

It is consistent because it is unbiased and its variance is equal to zero as n→∞.
E(σ̂2) = σ2 and

lim
n→∞

2σ4

n
= 0

.

d. Show that the variance of the estimate of part (a) is equal to the Cramer-Rao lower bound.
Answer:

lnf(x) = ln(2πσ2)−
1
2 −

1

2
(
x− 0

σ
)2 = −

1

2
ln(2π)−

1

2
ln(σ2)−

1

2

x2

σ2
.

We find now the first and second derivatives w.r.t. σ2.

∂lnf(x)

∂σ2
= −

1

2σ2
+

1

2σ4
x2.

∂2lnf(x)

∂(σ2)2
=

1

2σ4
−
x2

σ6
.

E

(
∂2lnf(x)

∂(σ2)2

)
= E

(
1

2σ4
−
x2

σ6

)
=

1

2σ4
−
EX2

σ6
= −

1

2σ4
.

Therefore,

1

−nE
(
∂2lnf(x)

∂(σ2)2

) =
1

−n(− 1
2σ4 )

=
2σ4

n
.

Therefore, σ̂2 is MVUE.


