Statistics 100B

University of California, Los Angeles Department of Statistics

Instructor: Nicolas Christou

Practice 4

EXERCISE 1

Let X_1, X_2, \dots, X_n be independent and identically distributed random variables from a Poisson distribution with parameter λ . We know that the maximum likelihood estimate of λ is $\hat{\lambda} = \bar{x}$.

- a. Find the variance of $\hat{\lambda}$.
- b. Is $\hat{\lambda}$ an MVUE?
- c. Is $\hat{\lambda}$ a consistent estimator of λ ?

EXERCISE 2

Suppose that two independent random samples of n_1 and n_2 observations are selected from two normal populations. Further, assume that the populations possess a common variance σ^2 which is unknown. Let the sample variances be S_1^2 and S_2^2 for which $E(S_1^2) = \sigma^2$ and $E(S_2^2) = \sigma^2$.

a. Show that the pooled estimator of σ^2 that we derived in class below is unbiased.

$$S^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

b. Find the variance of S^2 .

EXERCISE 3

Suppose $Y_i = \beta_1 x_i + \epsilon_i$. This is called regression through the origin (no intercept). In this simple regression model equation x_i is non-random, β_1 is a parameter (unknown), and $\epsilon_i \sim N(0, \sigma)$.

- a. Find the mean of Y_i .
- b. Find the variance of Y_i .
- c. What distribution does Y_i follow? Write the pdf of Y_i .
- d. Write the likelihood function based on n observations of Y and x.
- e. Find the maximum likelihood estimate of β_1 . Denote them with $\hat{\beta}_1$.
- f. Show that $\hat{\beta}_1$ is unbiased estimator and β_1 .
- g. Find the variance of $\hat{\beta}_1$.
- h. What is the distribution of $\hat{\beta}_1$?
- i. Find the maximum likelihood estimate of σ^2 .

EXERCISE 4

Consider a random sample X_1, X_2, \dots, X_n from the probability density function

$$f(x;\theta) = \frac{1+\theta x}{2}, \quad -1 \le x \le 1$$

- a. Find $\hat{\theta}$, the method of moments estimator of θ .
- b. Is $\hat{\theta}$ unbiased?
- c. Show that $Var(\hat{\theta}) = \frac{3-\theta^2}{n}$.
- d. Is $\hat{\theta}$ a consistent estimator of θ ?

EXERCISE 5 Answer the following questions:

a. Let X_1, X_2, \ldots, X_n be random variables each one having gamma distribution with parameters α, β . The probability density function, mean, and variance of the gamma distribution are given below:

$$f(x) = rac{x^{lpha - 1}e^{-rac{x}{eta}}}{eta^{lpha}\Gamma(lpha)}, \ \ lpha, eta > 0, x \ge 0.$$

- $E(X) = \alpha\beta$ and $\sigma^2 = \alpha\beta^2$. Use the method of moments to estimate α and β .
- b. Let X_1, X_2, \ldots, X_n be random variables each one having uniform distribution on the interval $(0, 3\theta)$. Derive the method of moments estimator of θ .
- c. Is the estimator from part (b) consistent? Explain.

EXERCISE 6

Let X_1, X_2, \ldots, X_n be random variables each one having the following distribution (this is one of the Pareto family of distributions). Suppose the parameter $\theta > 0$ is unknown.

$$f(x) = \begin{cases} 3\theta^3 x^{-4}, & x \ge \theta \\ 0, & \text{elsewhere} \end{cases}$$

Consider the estimator $\hat{\theta} = X_{(1)} = \min(X_1, X_2, \dots, X_n).$

- a. Show that the probability density function of $X_{(1)}$ is $g_1(x) = 3n\theta^{3n}x^{-3n-1}$.
- b. Show that the expected value of the estimator above is $E(\hat{\theta}) = \frac{3n\theta}{3n-1}$.
- c. Show that the bias of $\hat{\theta}$ is $B = \frac{\theta}{3n-1}$.

EXERCISE 7

For the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ show that

- a. $\sum_{i=1}^{n} e_i = 0.$
- b. $Cov(\bar{Y}, \hat{\beta}_1) = 0$ where \bar{Y} is the sample mean of the y values, and $\hat{\beta}_1$ is the estimate of β_1 .

EXERCISE 8

Consider the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Find $cov(e_i, e_j)$.