Answer the following questions:

a. We discussed in class today the multinomial probability distribution and its joint moment generating function. Here is a note on the multinomial distribution: A sequence of \(n \) independent experiments is performed and each experiment can result in one of \(r \) possible outcomes with probabilities \(p_1, p_2, \ldots, p_r \) with \(\sum_{i=1}^{r} p_i = 1 \). Let \(X_i \) be the number of the \(n \) experiments that result in outcome \(i, i = 1, 2, \ldots, r \). Then, \(P(X_1 = x_1, X_2 = x_2, \ldots, X_r = x_r) = \frac{n!}{n_1!n_2! \cdots n_r!} p_1^{x_1}p_2^{x_2} \cdots p_r^{x_r} \). The joint moment generating function of the multinomial distribution is given by \(M_X(t) = (p_1e^{t_1} + p_2e^{t_2} + \ldots + p_re^{t_r})^n \). Use properties of joint moment generating functions to find the probability distribution of \(X_1 \).

b. Refer to question (a). Use the joint moment generating function of the multinomial distribution and the theorem and corollary on handout #10, page 1 to find the mean and variance of \(X_1 \).

c. Refer to question (a). Show that \(\text{cov}(X_i, X_j) = -np_ip_j \). Give an intuitive explanation of the negative sign.

d. Let \(X \) and \(Y \) be independent normal random variables, each with mean \(\mu \) and standard deviation \(\sigma \).
 1. Consider the random quantities \(X + Y \) and \(X - Y \). Find the moment generating function of \(X + Y \) and the moment generating function of \(X - Y \).
 2. Find the joint moment generating function of \((X + Y, X - Y) \).
 3. Are \(X + Y \) and \(X - Y \) independent? Explain your answer using moment generating functions.