University of California, Los Angeles
 Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Quiz 2

EXERCISE 1

Let $U \sim N(0,1), V \sim \chi_{n}^{2}$, and U and V are independent. Let $t=\frac{U}{\sqrt{\frac{V}{n}}}$ and $W=V$. Find the joint pdf of t and W and then integrate the joint w.r.t. to W to show that the probability density function of the t distribution with $d f=n$ degrees of freedom is

$$
f(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}},-\infty<t<\infty
$$

EXERCISE 2

Suppose Q_{1}, \ldots, Q_{k} are independent. Let $Q_{1} \sim \chi_{p_{1}}^{2}\left(\theta_{1}\right), \ldots, Q_{k} \sim \chi_{p_{k}}^{2}\left(\theta_{k}\right)$, where p_{1}, \ldots, p_{k} are the degrees of freedom and $\theta_{1}, \ldots, \theta_{k}$ are the non-centrality parameters. Find the mean and variance of $Y=Q_{1}+\ldots+Q_{k}$.

EXERCISE 3

Answer the following questions:
a. We discussed in class today the multinomial probability distribution and its joint moment generating function. Here is a note on the multinomial distribution: A sequence of n independent experiments is performed and each experiment can result in one of r possible outcomes with probabilities $p_{1}, p_{2}, \ldots, p_{r}$ with $\sum_{i=1}^{r} p_{i}=1$. Let X_{i} be the number of the n experiments that result in outcome $i, i=1,2, \ldots, r$. Then, $P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{r}=\right.$ $\left.x_{r}\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}}$. The joint moment generating function of the multinomial distribution is given by $M_{\mathbf{X}}(\mathbf{t})=\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}+\ldots+p_{r} e^{t_{r}}\right)^{n}$. Use properties of joint moment generating functions to find the probability distribution of X_{1}.
b. Refer to question (a). Find the mean of \mathbf{X} and the variance covariance matrix of \mathbf{X}, where $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$.

EXERCISE 4

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent exponential random variables with mean $i \theta$. For example, $E\left(X_{1}\right)=\theta, E\left(X_{2}\right)=2 \theta$, etc. Suppose an estimate of of θ is $\hat{\theta}=\sum_{i=1}^{n}\left(\frac{X_{i}}{n i}\right)$.
a. Find the distribution of $\hat{\theta}$.
b. Find $E\left[\hat{\theta}^{-1}\right]$.
c. Find the MSE of $c \hat{\theta}^{-1}$ as an estimator of θ^{-1}, and find c that minimizes that MSE.

EXERCISE 5

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $f(x)=\frac{\alpha x^{\alpha-1}}{\theta^{\alpha}}, \alpha>0, \theta>0,0 \leq x \leq \theta$. Assume that θ is known. Use the factorization theorem to show that $\prod_{i=1}^{n} X_{i}$ is a sufficient statistics for α.

