University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Quiz 5

EXERCISE 1

Let $U \sim N(0,1)$, $V \sim \chi_n^2$, and U and V are independent. Let $t = \frac{U}{\sqrt{\frac{V}{n}}}$ and W = V. Find the joint pdf of t and W and then integrate the joint w.r.t. to W to show that the probability density function of the t distribution with df = n degrees of freedom is

$$f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n} \right)^{-\frac{n+1}{2}}, \quad -\infty < t < \infty.$$

EXERCISE 2

Suppose Q_1, \ldots, Q_k are independent. Let $Q_1 \sim \chi^2_{p_1}(\theta_1), \ldots, Q_k \sim \chi^2_{p_k}(\theta_k)$, where p_1, \ldots, p_k are the degrees of freedom and $\theta_1, \ldots, \theta_k$ are the non-centrality parameters. Find the mean and variance of $Y = Q_1 + \ldots + Q_k$.

EXERCISE 3

Let X_1, X_2, \ldots, X_n i.i.d. exponential random variables with parameter λ . Is $\frac{1}{X}$ unbiased estimator of λ ?