University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Quiz 6

EXERCISE 1

A probability problem.

Let's Make a Deal! A player is asked to choose one of three doors. Behind one of the doors there is a prize. Suppose the player chose door 1. The host of the game who knows where the prize is opens door 3 and the player sees that there is no prize behind this door. Then the host asks the player: Would you like to switch to door 2 or stay with door 1? Define the following events: H_i : Host opens door *i* and D_i : Prize is behind door *i*. Find $P(D_2|H_3)$ and $P(D_1|H_3)$ to show that switching has higher probability.

EXERCISE 2

Let X_1, X_2, \ldots, X_n be independent exponential random variables with mean $i\theta$. For example, $E(X_1) = \theta, E(X_2) = 2\theta$, etc. Suppose an estimate of θ is $\hat{\theta} = \sum_{i=1}^{n} \left(\frac{X_i}{n^i}\right)$.

- a. Find the distribution of $\hat{\theta}$.
- b. Find $E[\hat{\theta}^{-1}]$.
- c. Find the MSE of $c\hat{\theta}^{-1}$ as an estimator of θ^{-1} , and find c that minimizes that MSE.

EXERCISE 3

Answer the following questions:

- a. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim Poisson(\lambda)$. Show that $\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i(X_i 1)$ is unbiased estimate of λ^2 .
- b. Let X_1, X_2, \ldots, X_n i.i.d. normal random variables with $X_i \sim N(0, \sigma)$. Consider $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$. Is $\hat{\sigma}^2$ an efficient estimator of σ^2 ? First find the information using two different methods, for example, the variance of the score function and $-E\left[\frac{\partial^2 lnf(x;\theta)}{\partial \theta^2}\right]$.
- c. Let X_1, \ldots, X_n i.i.d. random variables with $X_i \sim N(\mu, \sigma)$. Is \bar{X} a consistent estimator of μ ? What if $var(X_i) = \sigma^2$ and $cov(X_i, X_j) = \rho\sigma^2$? Is \bar{X} a consistent estimator of μ ?