University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Quiz 8

Answer the following questions:

- a. Suppose X₁,..., X_n are i.i.d. Poisson(λ). Let S = ∑_{i=1}ⁿ X_i. Show that (X₁ = x₁,..., X_n = x_n) conditioned on S = N follows the multinomial distribution with parameters S and (¹/_n,..., ¹/_n). Hint 1: Find the joint pmf of X'_is. Given that S = N, ∑_i X_i = N. Use this result in the joint pmf of the X'_is. Hint 2: Continue by expressing the conditional pmf as the ratio of the joint and the marginal pmf's. Note on the multinomial probability distribution: A sequence of n independent experiments is performed and each experiment can result in one of r possible outcomes with probabilities p₁, p₂,..., p_r with ∑_{i=1}^r p_i = 1. Let X_i be the number of the n experiments that result in outcome i, i = 1, 2, ..., r. Then, P(X₁ = x₁, X₂ = x₂, ..., X_r = x_r) = ^{n!}/_{n1!n2!...nr!}p₁^{x1}p₂^{x2}...p_r^{xr}.
- b. Refer to question (a). Suppose we know that $E[X(X-1)] = \lambda^2$ and $var[X(X-1)] = 2\lambda^2 + 4\lambda^3$. Please explain how you would verify these two results. Let $T_1 = \frac{1}{n} \sum_{i=1}^n X_i(X_i - 1)$. Show that T_1 is unbiased estimator for λ^2 and compute its variance.
- c. Refer to question (a). Let $T_2 = E[T_1|S]$. Show that $T_2 = \frac{S(S-1)}{n^2}$. Note that $E[X_i|S] = S\frac{1}{n}$ and $\operatorname{var}(X_i|S) = S\frac{1}{n}\left(1 \frac{1}{n}\right)$. Is T_2 unbiased estimator of λ^2 ? Find $\operatorname{var}(T_2)$.
- d. Let X_1, \ldots, X_n be i.i.d. random variables with $f(x) = \frac{\alpha x^{\alpha-1}}{\theta^{\alpha}}, \alpha > 0, \theta > 0, 0 \le x \le \theta$. Assume that θ is known. Use the factorization theorem to show that $\prod_{i=1}^{n} X_i$ is a sufficient statistics for α .