Exercise 1
Suppose X has the possible values 0,1,2,3,4. Suppose that the null hypothesis says that X is uniform on these integers, while the alternative hypothesis says that $X \sim b(4, \frac{1}{2})$. Let’s see what happens if we let k of the Neyman-Pearson lemma be equal to 0.6. Complete the next table and find the best critical region when $k = 0.6$ and compute the power of the test.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x</td>
<td>H_0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(X = x</td>
<td>H_a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 2
Let X be a random variable whose probability mass function under H_0 and H_a is given by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x</td>
<td>H_0)$</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.94</td>
</tr>
<tr>
<td>$f(x</td>
<td>H_a)$</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Use the Neyman-Pearson lemma to find the most powerful test for testing H_0 against H_a with $\alpha = 0.04$. Compute the probability of Type II error for this test.

Exercise 3
It is known that the random variable X has a probability density function of the form $f(x) = \frac{1}{\theta} e^{-x/\theta}$. We want to test the hypothesis $H_0 : \theta = 2$ against $H_a : \theta = 4$. A random sample X_1, X_2 of size $n = 2$ will be selected. Suppose the rejection region is given by $X_1 + X_2 > 9.49$. Calculate the Type I and Type II error probabilities. For the Type I error probability you should use your χ^2 table. For the Type II error probability you may find the following table useful. Please show all your work.

<table>
<thead>
<tr>
<th>χ^2</th>
<th>$P(\chi^2 < 2 \times 9.49)$</th>
<th>$P(\chi^2 < 9.49)$</th>
<th>$P(\chi^2 < \frac{9.49}{2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2_2</td>
<td>0.9913</td>
<td>0.9068</td>
<td>0.9999</td>
</tr>
<tr>
<td>χ^2_4</td>
<td>0.9500</td>
<td>0.6855</td>
<td>0.9992</td>
</tr>
<tr>
<td>χ^2_8</td>
<td>0.6973</td>
<td>0.2155</td>
<td>0.9850</td>
</tr>
</tbody>
</table>

Exercise 4
A coin is thrown independently 10 times to test that the probability of heads is $\frac{1}{2}$ against the alternative that the probability is not $\frac{1}{2}$. The test rejects H_0 if either 0 or 10 heads are observed.

a. What is the significance level α of the test?

b. If in fact the probability of heads is 0.1, what is the power of the test?
Exercise 5
Let \(X \) be a uniform random variable on \((0, \theta)\). You have exactly one observation from this distribution and you want to test the null hypothesis \(H_0 : \theta = 10 \) against the alternative \(H_a : \theta > 10 \), and you want to use significance level \(\alpha = 0.10 \). Two testing procedures are being considered:

Procedure \(G \) rejects \(H_0 \) if and only if \(X \geq 9 \).
Procedure \(K \) rejects \(H_0 \) if either \(X \geq 9.5 \) or if \(X \leq 0.5 \).

a. Confirm that Procedure \(G \) has a Type I error probability of 0.10.
b. Confirm that Procedure \(K \) has a Type I error probability of 0.10.
c. Find the power of Procedure \(G \) when \(\theta = 12 \).
d. Find the power of Procedure \(K \) when \(\theta = 12 \).

Exercise 6
Answer the following questions:

a. Let \(X_1, X_2, \ldots, X_n \) denote a random sample from a Poisson distribution with parameter \(\lambda \). Find the best critical region for testing

\[H_0 : \lambda = 2 \]
\[H_a : \lambda = 5 \]

using the Neyman-Pearson lemma.

b. Let \(Y_1, Y_2, \ldots, Y_n \) be the outcomes of \(n \) independent Bernoulli trials. Find the best critical region for testing

\[H_0 : p = p_0 \]
\[H_a : p > p_0 \]

using the Neyman-Pearson lemma.

Exercise 7
Let \(X_1, \ldots, X_n \) be a random sample from an exponential distribution with parameter \(\theta \). Answer the following questions: Derive a likelihood ratio test for testing \(H_0 : \theta = \theta_0 \) against \(H_a : \theta \neq \theta_0 \), and show that the rejection region is of the form \(\{ \bar{X} \exp(-\theta_0 \bar{X}) \} < c \). Suppose \(\alpha = 0.05 \) and \(\theta_0 = 1 \). Explain why \(c \) should be chosen so that \(P(\bar{X} \exp(-\bar{X}) < c) = 0.05 \).

Exercise 8
Suppose \(X_1, \ldots, X_n \) are i.i.d. Poisson(\(\lambda_1 \)) and \(Y_1, \ldots, Y_n \) are i.i.d. Poisson(\(\lambda_2 \)). The two samples are independent. Find the most powerful test for testing \(H_0 : \lambda_1 = \lambda_2 = 2 \) against \(H_a : \lambda_1 = \frac{1}{2}, \lambda_2 = 3 \).