University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Homework 10

Exercise 1

Suppose X has the possible values 0,1,2,3,4. Suppose that the null hypothesis says that X is uniform on these integers, while the alternative hypothesis says that $X \sim b(4, \frac{1}{2})$. Let's see what happens if we let k of the Neyman-Pearson lemma be equal to 0.6. Complete the next table and find the best critical region when k = 0.6 and compute the power of the test.

x	0	1	2	3	4
$P(X = x H_0)$					
$P(X = x H_a)$					
$\frac{P(X=x H_0)}{P(X=x H_a)}$					

Exercise 2

Let X be a random variable whose probability mass function under H_0 and H_a is given by

x	1	2	3	4	5	6	7
$f(x H_0)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f(x H_a)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use the Neyman-Pearson lemma to find the most powerful test for testing H_0 against H_a with $\alpha = 0.04$. Compute the probability of Type II error for this test.

Exercise 3

It is known that the random variable X has a probability density function of the form $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$. We want to test the hypothesis $H_0: \theta = 2$ against $H_a: \theta = 4$. A random sample X_1, X_2 of size n = 2 will be selected. Suppose the rejection region is given by $X_1 + X_2 > 9.49$. Calculate the Type I and Type II error probabilities. For the Type I error probability you should use your χ^2 table. For the Type II error probability you may find the following table useful. Please show all your work.

χ^2	$P(\chi_{df}^2 < 9.49)$	$P(\chi_{df}^2 < \frac{9.49}{2})$	$P(\chi_{df}^2 < 2 \times 9.49)$
χ^2_2	0.9913	0.9068	0.9999
χ_4^2	0.9500	0.6855	0.9992
$\begin{array}{c} \chi_2^2 \\ \chi_4^2 \\ \chi_8^2 \end{array}$	0.6973	0.2155	0.9850

Exercise 4

A coin is thrown independently 10 times to test that the probability of heads is $\frac{1}{2}$ against the alternative that the probability is not $\frac{1}{2}$. The test rejects H_0 if either 0 or 10 heads are observed.

- a. What is the significance level α of the test?
- b. If in fact the probability of heads is 0.1, what is the power of the test?

Exercise 5

Let X be a uniform random variable on $(0, \theta)$. You have exactly one observation from this distribution and you want to test the null hypothesis $H_0: \theta = 10$ against the alternative $H_a: \theta > 10$, and you want to use significance level $\alpha = 0.10$. Two testing procedures are being considered:

Procedure G rejects H_0 if and only if $X \geq 9$.

Procedure K rejects H_0 if either $X \geq 9.5$ or if $X \leq 0.5$.

- a. Confirm that Procedure G has a Type I error probability of 0.10.
- b. Confirm that Procedure K has a Type I error probability of 0.10.
- c. Find the power of Procedure G when $\theta = 12$.
- d. Find the power of Procedure K when $\theta = 12$.

Exercise 6

Answer the following questions:

a. Let X_1, X_2, \dots, X_n denote a random sample from a Poisson distribution with parameter λ . Find the best critical region for testing

```
H_0: \lambda = 2 H_a: \lambda = 5 using the Neyman-Pearson lemma.
```

b. Let Y_1, Y_2, \dots, Y_n be the outcomes of n independent Bernoulli trials. Find the best critical region for testing

```
H_0: p=p_0 H_a: p>p_0 using the Neyman-Pearson lemma.
```

Exercise 7

Let X_1, \ldots, X_n be a random sample from an exponential distribution with parameter θ . Answer the following questions: Derive a likelihood ratio test for testing $H_0: \theta = \theta_0$ against $H_a: \theta \neq \theta_0$, and show that the rejection region is of the form $\{\bar{X}exp(-\theta_0\bar{X})\}\$ c. Suppose $\alpha = 0.05$ and $\theta_0 = 1$. Explain why c should be chosen so that $P(\bar{X}exp(-\bar{X}) < c) = 0.05$.

Exercise 8

Suppose X_1, \ldots, X_n are i.i.d. Poisson (λ_1) and Y_1, \ldots, Y_n are i.i.d. Poisson (λ_2) . The two samples are independent. Find the most powerful test for testing $H_0: \lambda_1 = \lambda_2 = 2$ against $H_a: \lambda_1 = \frac{1}{2}, \lambda_2 = 3$.