EXERCISE
Let Y_1, Y_2, \ldots, Y_n independent random variables, and let $Y_i \sim N(i\theta, i\sigma^2)$, i.e. $E(Y_i) = i\theta$ and $\text{var}(Y_i) = i^2\sigma^2$, for $i = 1, 2, \ldots, n$. Find the maximum likelihood estimator of θ. Is this estimator efficient estimator of θ?

EXERCISE 2
If X is binomial (n, p), then the variance of $\hat{p} = \frac{X}{n}$ (which is the maximum likelihood estimate of p) is $\sigma^2_{\hat{p}} = \frac{p(1-p)}{n}$. This variance is often estimated by $\hat{\sigma}^2 = \frac{\hat{p}(1-\hat{p})}{n} = \frac{X(1-X)}{n}$. Is this an unbiased estimator of $\sigma^2_{\hat{p}}$? If not find a constant c so that $c\hat{\sigma}^2$ is unbiased.

EXERCISE 3
The numbers w_1, w_2, \ldots, w_n are known positive values. The random variables X_1, X_2, \ldots, X_n are independent, and the distribution of X_i is $N(\mu, \sigma^2\sqrt{w_i})$. Both parameters μ and σ are unknown. Find the maximum likelihood estimates of μ and σ.

EXERCISE 4
Suppose Y_1, Y_2, \ldots, Y_n follow multivariate normal with mean $\mu\mathbf{1}$ and variance covariance matrix $\sigma^2\mathbf{V}$, where \mathbf{V} is an $n \times n$ symmetric matrix of known constants. Show that the maximum likelihood estimates of μ and σ^2 are $\hat{\mu} = \frac{\mathbf{1}'\mathbf{V}^{-1}\mathbf{Y}}{\mathbf{1}'\mathbf{V}^{-1}\mathbf{1}}$ and $\hat{\sigma}^2 = \frac{(\mathbf{Y} - \hat{\mu}\mathbf{1})'\mathbf{V}^{-1}(\mathbf{Y} - \hat{\mu}\mathbf{1})}{n}$. Find $E(\hat{\mu})$ and $E(\hat{\sigma}^2)$.