University of California, Los Angeles
 Department of Statistics

Statistics 100B
Instructor: Nicolas Christou

Homework 1

EXERCISE 1

A pdf or pmf is called an exponential family if it can be expressed as

$$
f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) .
$$

Express $X \sim \Gamma(\alpha, \beta)$ in this form.

EXERCISE 2

Let $X \sim \Gamma(\alpha, \beta)$. Show that for $k>0, E X^{k}=\frac{\Gamma(\alpha+k) \beta^{k}}{\Gamma(\alpha)}$.

EXERCISE 3

The two theorems we discussed in class are:

$$
E\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(x)\right)=-\frac{\partial}{\partial \theta_{j}} \log c(\boldsymbol{\theta}) .
$$

and

$$
\operatorname{var}\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(x)\right)=-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\boldsymbol{\theta})-E\left(\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} t_{i}(x)\right) .
$$

Note: Here log is the natural logarithm.
In class we showed that the binomial pmf can be expressed in the exponential family form and then we found $E(X)=n p$ using the first theorem. Use the second theorem to show that $\operatorname{var}(X)=n p(1-p)$.

EXERCISE 4

Prove theorem 1. For the first statement of the theorem use the following:

$$
\begin{aligned}
\int_{x} f(x \mid \boldsymbol{\theta}) d x & =1 \\
\int_{x} h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) & =1
\end{aligned}
$$

Hint: Differentiate both sides w.r.t. θ_{j} and rearrange to prove the first statement of the theorem.

For the second statement of the theorem differentiate a second time and rearrange.

EXERCISE 5

The probability density function of the beta distribution is given by

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, \quad \alpha>0, \beta>0,0<x<1 .
$$

where,

$$
B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Show that $E X^{n}=\frac{B(\alpha+n, \beta)}{B(\alpha, \beta)}=\frac{\Gamma(\alpha+n) \Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n) \Gamma(\alpha)}$.

EXERCISE 6

Show that

1. $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$.
2. $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
