EXERCISE 1
A pdf or pmf is called an exponential family if it can be expressed as

\[f(x|\theta) = h(x)c(\theta)exp\left(\sum_{i=1}^{k} w_i(\theta)t_i(x)\right). \]

Express \(X \sim \Gamma(\alpha, \beta) \) in this form.

EXERCISE 2
Let \(X \sim \Gamma(\alpha, \beta) \). Show that for \(k > 0 \),

\[EX^k = \frac{\Gamma(\alpha+k)\beta^k}{\Gamma(\alpha)}. \]

EXERCISE 3
The two theorems we discussed in class are:

\[E\left(\sum_{i=1}^{k} \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(x)\right) = -\frac{\partial}{\partial \theta_j} \log c(\theta). \]

and

\[\text{var}\left(\sum_{i=1}^{k} \frac{\partial w_i(\theta)}{\partial \theta_j} t_i(x)\right) = -\frac{\partial^2}{\partial \theta_j^2} \log c(\theta) - E\left(\sum_{i=1}^{k} \frac{\partial^2 w_i(\theta)}{\partial \theta_j^2} t_i(x)\right). \]

Note: Here \(\log \) is the natural logarithm.

In class we showed that the binomial pmf can be expressed in the exponential family form and then we found \(E(X) = np \) using the first theorem. Use the second theorem to show that \(\text{var}(X) = np(1-p) \).

EXERCISE 4
Prove theorem 1. For the first statement of the theorem use the following:

\[\int_{x} f(x|\theta)dx = 1 \]

\[\int_{x} h(x)c(\theta)exp\left(\sum_{i=1}^{k} w_i(\theta)t_i(x)\right) = 1. \]

Hint: Differentiate both sides w.r.t. \(\theta_j \) and rearrange to prove the first statement of the theorem.

For the second statement of the theorem differentiate a second time and rearrange.
EXERCISE 5
The probability density function of the beta distribution is given by
\[f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, \quad \alpha > 0, \beta > 0, \quad 0 < x < 1. \]
where,
\[B(\alpha, \beta) = \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} \, dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}. \]
Show that \(EX^n = \frac{B(\alpha+n, \beta)}{B(\alpha, \beta)} = \frac{\Gamma(\alpha+n)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n)\Gamma(\alpha)}. \)

EXERCISE 6
Show that
1. \(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha). \)
2. \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}. \)

EXERCISE 7
Let \(X \sim N(\mu, \sigma). \)

a. Use the properties of moment generating functions to show that \(aX + b \sim N(a\mu + b, a\sigma). \)

b. Use the cdf method to show that \(aX + b \sim N(a\mu + b, a\sigma). \)

EXERCISE 8
Answer the following questions:

a. Let \(\ln(X) \sim N(\mu, \sigma). \) Find \(EX \) and \(var(X). \)

b. Let \(X_1, X_2, \ldots, X_n \) be independent random variables having respectively the normal distributions \(N(\mu_i, \sigma_i), i = 1, \ldots, n. \) Consider the random variable \(Y = \sum_{i=1}^n k_i X_i. \) Use moment generating functions to find the distribution of \(Y. \)

c. Let \(X_1, X_2, \ldots, X_n \) be i.i.d. random variables with \(X_i \sim \Gamma(\alpha, \beta). \) Use the properties of moment generating functions to find the distribution of \(T = X_1 + X_2 + \ldots X_n \) and \(\bar{X} = \frac{X_1 + X_2 + \ldots X_n}{n}. \)

EXERCISE 9
Let \(X \sim N(\mu, \sigma). \) Stein’s lemma states that if \(g \) is a differentiable function satisfying \(Eg'(X) < \infty \) then \(E[g(X)](X - \mu) = \sigma^2 Eg'(X). \) Use Stein’s lemma to show that \(EX^4 = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4. \) Hint: Write \(EX^4 \) as \(EX^3(X - \mu + \mu). \)

EXERCISE 10
Let \(X \) follow a normal distribution with mean \(\mu \) and variance \(\sigma^2. \) Show that the normal pdf is a member of the exponential family. Note: Use \(h(x) = 1. \).