University of California, Los Angeles **Department of Statistics**

Statistics 100B

Instructor: Nicolas Christou

Homework 2

EXERCISE 1

Let $X \sim N(\mu, \sigma)$.

- a. Use the properties of moment generating functions to show that $aX + b \sim N(a\mu + b, a\sigma)$.
- b. Use the cdf method to show that $aX + b \sim N(a\mu + b, a\sigma)$.

EXERCISE 2

Answer the following questions:

- a. Let $\ln(X) \sim N(\mu, \sigma)$. Find EX and var(X).
- b. Let X_1, X_2, \ldots, X_n be independent random variables having respectively the normal distributions $N(\mu_i, \sigma_i), i = 1, ..., n$. Consider the random variable $Y = \sum_{i=1}^n k_i X_i$. Use moment generating functions to find the distribution of Y.
- c. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim \Gamma(\alpha, \beta)$. Use the properties of moment generating functions to find the distribution of $T = X_1 + X_2 + \ldots + X_n$ and $\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$

EXERCISE 3

Let $X \sim N(\mu, \sigma)$. Stein's lemma states that if q is a differentiable function satisfying $Eg'(X) < \infty$ then $E[g(X)(X - \mu)] = \sigma^2 Eg'(X)$. Use Stein's lemma to show that $EX^4 = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$. Hint: Write EX^4 as $EX^3(X - \mu + \mu)$.

EXERCISE 4

EXERCISE 4 Let X_1, \ldots, X_n i.i.d. random variables with $X_i \sim N(\mu, \sigma)$. Express the vector $\begin{pmatrix} X_1 - A \\ X_2 - \bar{X} \\ \vdots \\ Y - \bar{X} \end{pmatrix}$

in the form **AX** and find its mean and variance covariance matrix. Show some typical elements of the variance covariance matrix.

EXERCISE 5

Answer the following questions:

- a. Suppose X has a uniform distribution on (0, 1). Find the mean and variance covariance matrix of the random vector $\begin{pmatrix} X \\ X^2 \end{pmatrix}$.
- b. Suppose X_1 and X_2 are independent with $\Gamma(\alpha, 1)$ and $\Gamma(\alpha + \frac{1}{2}, 1)$ distributions. Let $Y = 2\sqrt{X_1X_2}$. Find EY and var(Y).