University of California, Los Angeles
 Department of Statistics

Statistics 100B
Instructor: Nicolas Christou

Homework 2

EXERCISE 1

The two theorems we discussed in class are:

$$
E\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(x)\right)=-\frac{\partial}{\partial \theta_{j}} \log c(\boldsymbol{\theta}) .
$$

and

$$
\operatorname{var}\left(\sum_{i=1}^{k} \frac{\partial w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} t_{i}(x)\right)=-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\boldsymbol{\theta})-E\left(\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} t_{i}(x)\right) .
$$

Note: Here \log is the natural logarithm.
In class we showed that the binomial pmf can be expressed in the exponential family form and then we found $E(X)=n p$ using the first theorem. Use the second theorem to show that $\operatorname{var}(X)=n p(1-p)$.

EXERCISE 2

Prove theorem 1 using the following:

$$
\begin{aligned}
\int_{x} f(x \mid \boldsymbol{\theta}) d x & =1 \\
\int_{x} h(x) c(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right) & =1
\end{aligned}
$$

Hint: Differentiate both sides w.r.t. θ_{j} and rearrange to prove theorem 1.

