University of California, Los Angeles **Department of Statistics**

Statistics 100B

Instructor: Nicolas Christou

Homework 2

EXERCISE 1

Let $X \sim \Gamma(\alpha, \beta)$. Show that $EX^k = \frac{\Gamma(\alpha+k)\beta^k}{\Gamma(\alpha)}$ and use it to find the mean and variance of X.

Hint 1: The pdf of $X \sim \Gamma(\alpha, \beta)$ is given by $f(x) = \frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)\beta^{\alpha}}, x > 0, \alpha > 0, \beta > 0$. Therefore, $\int_0^\infty \frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)\beta^{\alpha}} dx = 1$. We want to find EX^k , which is the expectation of a function of X. Therefore, using E[g(X)] = 1. $\int_x g(x)f(x)dx$ we get $EX^k = \int_0^\infty \frac{x^{\alpha+k-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)\beta^{\alpha}}dx$. Now you need to make the integral equal to 1 by moving constants outside and multiplying and dividing by other constants.

Hint 2: For EX use k = 1. Also, you can use the following property of the gamma function: $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$. For the variance, use k = 2 to find EX^2 and then $var(X) = EX^2 - (EX)^2$.

EXERCISE 2

Answer the following questions:

- a. Let $X \sim N(\mu, \sigma)$. Use the properties of moment generating functions to show that if a, b are constants then $aX + b \sim N(a\mu + b, a\sigma)$.
- b. Let $\ln(X) \sim N(\mu, \sigma)$. Find *EX* and *var*(*X*).
- c. Let X_1, X_2, \ldots, X_n be independent random variables having respectively the normal distributions $N(\mu_i, \sigma_i), i = 1, \ldots, n$. Consider the random variable $Y = \sum_{i=1}^n k_i X_i$. Use moment generating functions to find the distribution of Y.
- d. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim \Gamma(\alpha, \beta)$. Use the properties of moment generating functions to find the distribution of $T = X_1 + X_2 + \dots + X_n$ and $\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$.

EXERCISE 3

EXERCISE 5 The probability density function of the beta distribution is given by $f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad \alpha > 0, \quad \beta > 0, \quad 0 < x < 1.$ where, $B(\alpha,\beta) = \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$ Show that $EX^n = \frac{B(\alpha+n,\beta)}{B(\alpha,\beta)} = \frac{\Gamma(\alpha+n)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n)\Gamma(\alpha)}.$

EXERCISE 4

Suppose X_1, X_2, \ldots, X_n be i.i.d. random variables with $X_i \sim exp(\lambda)$. Show that $\sum_{i=1}^n X_i$ follows a gamma distribution. What are the parameters? Then use the result of exercise 1 to find $E\left|\frac{1}{\sum_{i=1}^{n}X_{i}}\right|$.

EXERCISE 5

Answer the following questions:

- a. Let $M_X(t) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}$ be the moment-generating function of a discrete random variable X. Find E(X) and var(X).
- b. Suppose $U \sim \Gamma(\alpha, \beta)$, with $\alpha > 0, \beta > 0$ and let $Y = e^U$. Suppose we want to find EY and var(Y). One way to do this is to find first the pdf of Y and then compute the moments using $EY = \int_{u} yf(y)dy$ and $EY^2 = \int_y y^2 f(y) dy$. Instead, use properties of moment generating function to find without integration EY and var(Y).
- c. Let X follow the Poisson probability distribution with parameter λ . Its moment-generating func-tion is $M_X(t) = e^{\lambda(e^t-1)}$. Show that the moment-generating function of $Z = \frac{X-\lambda}{\sqrt{\lambda}}$ is given by $M_Z(t) = e^{-\sqrt{\lambda}t}e^{\lambda(e^{\frac{t}{\sqrt{\lambda}}}-1)}$. Then use the series expansion of $e^{\frac{t}{\sqrt{\lambda}}} = 1 + \frac{\frac{t}{\sqrt{\lambda}}}{1!} + \frac{(\frac{t}{\sqrt{\lambda}})^2}{2!} + \frac{(\frac{t}{\sqrt{\lambda}})^3}{3!} + \cdots$ to show that $\lim_{\lambda \to \infty} M_Z(t) = e^{\frac{1}{2}t^2}$. In other words, as $\lambda \to \infty$, the ratio $Z = \frac{X-\lambda}{\sqrt{\lambda}}$ converges to the standard normal distribution.

EXERCISE 6

Suppose $(Y_1, Y_2, \ldots, Y_n)'$ is a random vector with mean $\mu \mathbf{1}$ and variance covariance matrix $\sigma^2 \mathbf{V}$, where \mathbf{V} is an $n \times n$ symmetric matrix of known constants. Consider the expressions

(a) $m = \frac{\mathbf{1}' \mathbf{V}^{-1} \mathbf{Y}}{\mathbf{1}' \mathbf{V}^{-1} \mathbf{1}}$ and (b) $q = \frac{(\mathbf{Y} - m\mathbf{1})' \mathbf{V}^{-1} (\mathbf{Y} - m\mathbf{1})}{n}$.

Find the mean and variance of (a) and the mean of (b).

EXERCISE 7

Answer the following questions:

- a. Suppose Y follows a $\Gamma(\alpha, \beta)$ distribution. Find the mean and variance covariance matrix of the random vector $\begin{pmatrix} X \\ X^2 \end{pmatrix}$, where $X = e^Y$.
- b. Let X_1, X_2, \ldots, X_n be i.i.d random variables with $X_i \sim exp(\lambda)$. Find the expected value and variance of $\frac{1}{X}$, where \overline{X} is the sample mean of X_1, X_2, \ldots, X_n .

EXERCISE 8

Suppose Y_1, \ldots, Y_n are i.i.d. random variables with $Y_i \sim N(\mu, \sigma)$. Express the following vector in the form $\begin{pmatrix} \bar{Y} \\ \bar{Y} \end{pmatrix}$

AY and find its mean and variance:

$$\begin{array}{c} I \\ Y_1 - Y_2 \\ Y_2 - Y_3 \\ \vdots \\ Y_{n-1} - Y_n \end{array} \right).$$

EXERCISE 9

Answer the following questions:

- a. Let $X \sim \Gamma(\frac{n}{2}, \beta)$. Find the distribution of $Y = \frac{2X}{\beta}$ using the method of cdf and the method of moment generating functions.
- b. Suppose X has the p.d.f. $f(x) = 4x^3, 0 < x < 1$. Use the method of cdf to show that $Y = -2\ln X^4$ follows a gamma distribution. What are the parameters of this gamma distribution?

EXERCISE 10

Suppose that X_1, \dots, X_m and Y_1, \dots, Y_n are two samples, with $X_i \sim N(\mu_1, \sigma_1)$ and $Y_i \sim N(\mu_2, \sigma_2)$. The difference between the sample means, $\overline{X} - \overline{Y}$, is then a linear combination of m + n normal random variables. All the random variables are independent. Answer the following questions:

- a. Use moment generating functions to show that $\bar{X} \bar{Y}$ follows a normal distribution. Find the mean and variance of this distribution.
- b. Suppose $\sigma_1^2 = 2, \sigma_2^2 = 2.5$, and m = n. Find the sample size n so that $\bar{X} \bar{Y}$ will be within one unit of $\mu_1 \mu_2$ with probability 0.95. You can use the standard normal table from the course website here:

http://www.stat.ucla.edu/~nchristo/statistics100B/stat100b_z_table.pdf.