University of California, Los Angeles
 Department of Statistics

Instructor: Nicolas Christou

Homework 2

EXERCISE 1

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $X_{i} \sim N(\mu, \sigma)$.
a. Express the vector $\left(\begin{array}{c}X_{1}-\bar{X} \\ X_{2}-\bar{X} \\ \vdots \\ X_{n}-\bar{X}\end{array}\right)$ in the form $\mathbf{A X}$ and find its mean and variance covariance matrix. Hint:

Express \bar{X} in the form $\mathbf{a}^{\prime} \mathbf{X}$. What is the vector a here? Show some typical elements of the variance covariance matrix.
b. Use properties of the trace to find $E\left[\mathbf{X}^{\prime} \mathbf{A X}\right]$. Hint: From class notes we see that when $\mathbf{X}^{\prime} \mathbf{A X}$ is a scalar we can write it as $\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{A X}\right)$ and then take expectation.

EXERCISE 2

Answer the following questions:
a. Suppose X has a uniform distribution on $(0,1)$. Find the mean and variance covariance matrix of the random vector $\binom{X}{X^{2}}$. Hint: Review concepts of $E(X)$ and $E\left(X^{2}\right)$ for the mean vector. For the variance covariance matrix we will need to find also $\operatorname{cov}\left(X, X^{2}\right)$.
b. Suppose X_{1} and X_{2} are independent with $\Gamma(\alpha, 1)$ and $\Gamma\left(\alpha+\frac{1}{2}, 1\right)$ distributions. Let $Y=2 \sqrt{X_{1} X_{2}}$. Find $E Y$ and $\operatorname{var}(Y)$. Hint: Here X_{1} and X_{2} are independent. Also the result from homework 1, exercise 3 can be very helpful.

EXERCISE 3

Answer the following questions.
a. Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ be a random vector with joint moment generating function $M_{\mathbf{X}}(\mathbf{t})$. In class we discuss this theorem: Let $M_{i}(\mathbf{t})=\frac{\partial M_{\mathbf{X}}(\mathbf{t})}{\partial t_{i}}, M_{i i}(\mathbf{t})=\frac{\partial^{2} M_{\mathbf{X}}(\mathbf{t})}{\partial t_{i}{ }^{2}}$, and $M_{i j}(\mathbf{t})=\frac{\partial^{2} M_{\mathbf{X}}(\mathbf{t})}{\partial t_{i} \partial t_{j}}$. Then, $E X_{i}=M_{i}(\mathbf{0}), E X_{i}^{2}=$ $M_{i i}(\mathbf{0})$, and $E X_{i} X_{j}=M_{i j}(\mathbf{0})$. Prove this theorem when $n=2$. Hint: Use the definition of the joint moment generating function (double integral when $n=2$) and take first derivative w.r.t. t_{1}, second derivative w.r.t. t_{1}, and second derivative w.r.t. t_{1} and t_{2} and evaluate these derivatives by setting $t_{1}=0$ and $t_{2}=0$.
b. Suppose $U \sim \Gamma(\alpha, \beta)$, with $\alpha>0, \beta>0$ and let $Y=e^{U}$. Find the probability density function of Y. Find $E Y$ and $\operatorname{var}(Y)$. Hint: Use the moment generating function of the gamma distribution.

EXERCISE 4

Suppose the joint moment generating function of X and Y is given by $M_{X, Y}\left(t_{1}, t_{2}\right)=e^{8 t_{1}+3 t_{2}+\frac{1}{2} 5 t_{1}^{2}+2 t_{1} t_{2}+2 t_{2}^{2}}$. Use the Corollary from the handout on joint moment generating functions to find the following:
a. Mean vector of $\binom{X}{Y}$.
b. Variance covariance matrix of $\binom{X}{Y}$.
c. $\operatorname{corr}(X, Y)$
d. Are X, Y independent? (Find the marginal moment generating functions of X and Y and check if their product is equal to the joint moment generating function.).

EXERCISE 5

Answer the following questions:
a. Suppose $X \sim \Gamma\left(\frac{1}{2}, 2\right)$. Find the pdf of $Y=X^{\frac{1}{4}}$.
b. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables with $X_{i} \sim \exp (\lambda)$. Find the distribution of $\sum_{i=1}^{n} X_{i}$.
c. Let Y_{1}, \ldots, Y_{n} be i.i.d. random variables with pdf $f(y)=\theta y^{\theta-1}, 0<y<1, \theta>0$. Let $W_{i}=-\ln \left(Y_{i}\right)$. Find the pdf of W_{i}.
d. Refer to question (d). Show that $2 \theta \sum_{i=1}^{n} W_{i}$ follows a gamma distribution. What are the parameters of this distribution.
e. Refer to question (d). Find $E\left(\frac{n-1}{\sum_{i=1}^{n} W_{i}}\right)$, where $W_{i}=-\ln \left(Y_{i}\right)$.

