University of California, Los Angeles
 Department of Statistics

Homework 3

EXERCISE 1

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, be a random sample from a bivariate normal distribution with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho$. (Note: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are independent). What is the joint distribution of (\bar{X}, \bar{Y}) ? Hint: Find the joint moment generating function of (\bar{X}, \bar{Y}) and compare it to the joint moment generating function of multivariate normal distribution.

EXERCISE 2

Find the moment generating function of the Bernoulli random variable. Then use the fact that the sum of independent Bernoulli is binomial to find the moment generating function of the binomial distribution.

EXERCISE 3

Answer the following questions:
a. Let X_{1}, X_{2}, X_{3} be i.i.d. random variables $N(0,1)$. Show that $Y_{1}=X_{1}+\delta X_{3}$ and $Y_{2}=X_{2}+\delta X_{3}$ have bivariate normal distribution. Find the value of δ so that the correlation coefficient between Y_{1} and Y_{2} is $\rho=\frac{1}{2}$.
b. Let X and Y follow the bivariate normal distribution with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho$. Show that $W=X-\mu_{1}$ and $Q=\left(Y-\mu_{2}\right)-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right)$ are independent normal random variables.

EXERCISE 4

Answer the following questions:
a. Let X_{1} and X_{2} be two independent normal random variables with mean zero and variance 1. Show that the vector $\mathbf{Z}=\left(Z_{1}, Z_{2}\right)^{\prime}$, where

$$
\begin{aligned}
& Z_{1}=\mu_{1}+\sigma_{1} X_{1} \\
& Z_{2}=\mu_{2}+\rho \sigma_{2} X_{1}+\sigma_{2} \sqrt{1-\rho^{2}} X_{2}
\end{aligned}
$$

follows the bivariate normal distribution with parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho$.
b. Suppose $\binom{X_{1}}{X_{2}} \sim N_{2}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Consider the vector $\binom{Y_{1}}{Y_{2}}$, where $Y_{i}=e^{X_{i}}, i=1,2$. Find $E Y_{1}^{3}$ and covariance between Y_{1}^{3}, Y_{2}^{3}.

