University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Homework 3

EXERCISE 1

Let $X \sim N(\mu, \sigma)$.

a. Use the properties of moment generating functions to show that $aX + b \sim N(a\mu + b, a\sigma)$.

b. Use the cdf method to show that $aX + b \sim N(a\mu + b, a\sigma)$.

EXERCISE 2

Let $\ln(X) \sim N(\mu, \sigma)$. Find EX and var(X).

EXERCISE 3

Let X_1, X_2, X_n be i.i.d. random variables with $X_i \sim \Gamma(\alpha, \beta)$. Use the properties of moment generating functions to find the distribution of $T = X_1 + X_2 + \ldots + X_n$ and $\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$.

EXERCISE 4

Let $X \sim N(\mu, \sigma)$. Stein's lemma states that if g is a differentiable function satisfying $Eg'(X) < \infty$ then $E[g(X)(X-\mu)] = \sigma^2 Eg'(X)$. Use Stein's lemma to show that $EX^4 = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$. Hint: Write EX^4 as $EX^3(X-\mu+\mu)$.

EXERCISE 5

Let $M_{X_{1,X_{2}}}(t_{1},t_{2})$ be the moment generating function of the bivariate normal distribution. Show that if we let $\Psi(t_{1},t_{2}) = lnM_{X_{1,X_{2}}}(t_{1},t_{2})$ then $\frac{\partial^{2}\Psi(0,0)}{\partial t_{1}\partial t_{2}}$ gives the covariance directly. Can we also obtain the covariance using $\frac{\partial^{2}M_{X_{1,X_{2}}}(0,0)}{\partial t_{1}\partial t_{2}} - \frac{\partial M_{X_{1,X_{2}}}(0,0)}{\partial t_{1}} \times \frac{\partial M_{X_{1,X_{2}}}(0,0)}{\partial t_{2}}$?