University of California, Los Angeles
 Department of Statistics

Statistics 100B
Instructor: Nicolas Christou

Homework 3

EXERCISE 1

Suppose Y_{1} is the length of time a machine operates without failure. Let Y_{2} be the length of time required to repair the machine after a failure. If Y_{1} and Y_{2} are independent exponential random variables with pdf $f\left(y_{i}\right)=e^{-y_{i}}, i=1,2$, show that the probability density function of $U=\frac{Y_{1}}{Y_{1}+Y_{2}}$ follows the uniform distribution. Hint: Let $V=Y_{2}$ and find the joint of U and V. Finally integrate the joint w.r.t. V to find the pdf of U. Also, show that U and $Y_{1}+Y_{2}$ are independent.

EXERCISE 2

Let X and Y be independent standard normal random variables. Consider the transformation $U=X+Y$ and $V=X-Y$.
a. Use the theory of distributions of functions of random variables (Jacobian) to find the joint pdf of U and V. Are U and V independent? Why? What is the distribution of U and the distribution of V ?
b. Use moment generating functions to answer question (a).

EXERCISE 3

Let $X \sim \operatorname{beta}(\alpha, \beta)$ and Let $Y \sim \operatorname{beta}(\alpha+\beta, \gamma)$. If X and Y are independent random variables find the joint pdf of U and V where $U=X Y$ and $V=X$.

EXERCISE 4

Suppose Y is the number of pollution particles in volume v and assume that Y follows the Poisson distribution with mean λv.
a. If a point is randomly selected within the volume v find the pdf of its distance R from the nearest pollution particle. Note the volume of a sphere with radius r is $\frac{4}{3} \pi r^{3}$.
b. Refer to question (a). Let $U=R^{3}$. Show that U follows exponential distribution. What is the mean and variance of U ?

EXERCISE 5

Let X_{1}, X_{2}, and X_{3} be three independent gamma random variables with parameters $\left(\frac{r_{1}}{2}, 2\right),\left(\frac{r_{2}}{2}, 2\right),\left(\frac{r_{3}}{2}, 2\right)$ respectively. Use the joint distribution of functions of random variables and the Jacobian to show that $Y_{1}=\frac{X_{1}}{X_{2}}$ and $Y_{2}=X_{1}+X_{2}$ are independent and that $Y_{2} \sim \Gamma\left(\frac{r_{1}+r_{2}}{2}, 2\right)$. Conclude by reasoning that $\frac{\frac{X_{1}}{r_{1}}}{\frac{X_{2}}{r_{2}}}$ and $\frac{\frac{X_{3}}{r_{3}}}{\frac{X_{1}+X_{2}}{r_{1}+r_{2}}}$ are independent.

EXERCISE 6

The multinomial distribution is defined as follows: A sequence of n independent experiments is performed and each experiment can result in one of r possible outcomes with probabilities $p_{1}, p_{2}, \ldots, p_{r}$ with $\sum_{i=1}^{r} p_{i}=1$. Let X_{i} be the number of the n experiments that result in outcome $i, i=1,2, \ldots, r$. Then, $P\left(X_{1}=x_{1}, X_{2}=\right.$ $\left.x_{2}, \ldots, X_{r}=x_{r}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{r}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}}$. Find the conditional pmf of $\left(X_{1}, X_{2}, \ldots, X_{r-1}\right)$ given that $X_{r}=x_{r}$ and show that it is also multinomial. What are the parameters of this pmf?

EXERCISE 7

Answer the following questions:
a. Consider independent Bernoulli trials where the success probability follows a beta distribution: $P_{i} \sim$ beta (α, β). Therefore, $X_{i} \mid P_{i} \sim \operatorname{Bernoulli}\left(P_{i}\right)$. Suppose we are interested in the total number of successes $Y=\sum_{i=1}^{n} X_{i}$. Find the mean and variance of Y by using the following theorem on expectation and variance by conditioning:
Theorem: If X and Y are any two random variables then

1. $E[X]=E(E[X \mid Y])$.
2. $\operatorname{var}[X]=E(\operatorname{var}[X \mid Y])+\operatorname{var}(E[X \mid Y])$.
b. Refer to question (a). Suppose now we have k independent binomial experiments with different fixed number of trials $\left(n_{1}, \ldots, n_{k}\right)$ and success probability that follows a beta distribution with parameters α, β. So we can write, $X_{i} \mid P_{i} \sim \mathrm{~b}\left(n_{i}, P_{i}\right)$ and $P_{i} \sim \operatorname{beta}(\alpha, \beta)$. Use the theorem on conditional mean and variance from question (b) to find the mean and variance of Y, where $Y=\sum_{i=1}^{k} X_{i}$.

EXERCISE 8

Find the pdf of $\Pi_{i=1}^{n} X_{i}$ where X_{1}, \ldots, X_{n} are independent uniform $(0,1)$.

