# University of California, Los Angeles <br> Department of Statistics 

Statistics 100B
Instructor: Nicolas Christou

## Homework 4

Answer the following questions:
a. Let $X \sim F_{m, n}$. Show that $F_{\alpha ; m, n}=\frac{1}{F_{1-\alpha ; n, m}}$ and $t_{1-\frac{\alpha}{2} ; n}^{2}=F_{1-\alpha ; 1, n}$ and draw the relevant graphs for both questions.
b. Let $X_{1}, X_{2}, \ldots, X_{13}$ and $Y_{1}, Y_{2}, \ldots, Y_{16}$ represent two independent random samples from the respective normal distributions $N\left(\mu_{1}, \sigma_{1}\right)$ and $N\left(\mu_{2}, \sigma_{2}\right)$. It is given that $\sigma_{1}^{2}=\frac{1}{5} \sigma_{2}^{2}$, but $\sigma_{2}^{2}$ is unknown. Construct a ratio that follows the $t$ distribution with 27 degrees of freedom.
c. Find the mean and variance of $X \sim F_{n, m}$.
d. Let $\mathbf{X} \sim N_{n}(\mu \mathbf{1}, \boldsymbol{\Sigma})$, where $\mathbf{1}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$, and $\boldsymbol{\Sigma}$ is the variance covariance matrix of $\mathbf{X}$.

Let $\boldsymbol{\Sigma}=(1-\rho) \mathbf{I}+\rho \mathbf{J}$, with $\rho>-\frac{1}{n-1}, \mathbf{I}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1\end{array}\right)$ and $\mathbf{J}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1\end{array}\right)$.
Therefore, when $\rho=0$ we have $\mathbf{X} \sim N_{n}(\mu \mathbf{1}, \mathbf{I})$, and in this case we showed in class that $\bar{X}$ and $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent. Are they independent when $\rho \neq 0$ ?
e. If $\mathbf{Y} \sim N_{2}(\mathbf{0}, \boldsymbol{\Sigma})$ prove that $\left(\mathbf{Y}^{\prime} \boldsymbol{\Sigma}^{\mathbf{- 1}} \mathbf{Y}-\frac{Y_{1}^{2}}{\sigma_{1}^{2}}\right) \sim \chi_{1}^{2}$.

Note: $\boldsymbol{\Sigma}=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2}\end{array}\right), \boldsymbol{\Sigma}^{-\mathbf{1}}=\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{12}^{2}}\left(\begin{array}{cc}\sigma_{2}^{2} & -\sigma_{12} \\ -\sigma_{21} & \sigma_{1}^{2}\end{array}\right), \sigma_{12}=\sigma_{21}, \sigma_{12}=\rho \sigma_{1} \sigma_{2}$.
f. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, be a random sample from a bivariate normal distribution, $N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. (Note: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are independent). What is the distribution of $n\left(\bar{X}-\mu_{1}, \bar{Y}-\mu_{2}\right) \boldsymbol{\Sigma}^{\boldsymbol{1}}\binom{\bar{X}-\mu_{1}}{\bar{Y}-\mu_{2}}$.

