University of California, Los Angeles
 Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Homework 4

EXERCISE 1

Let $\left(X_{i}, Y_{i}\right), i=1,2, \ldots, n$ be a random sample from a bivariate normal distribution (the n pairs are independent). Consider the vector $\mathbf{W}=\binom{\mathbf{X}}{\mathbf{Y}}$, where $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Find the distribution of \mathbf{W}.

EXERCISE 2

Suppose $\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n}$ are independent $N(0, \sigma)$ and let $Y_{i}=\epsilon_{i}+c \epsilon_{i-1}$, where c is a known constant. Show that $\mathbf{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right)$ follows multivariate normal. What is the mean and variance covariance matrix?

EXERCISE 3

Suppose X_{1}, X_{2}, X_{3} be independent random variables that follow $\Gamma\left(\alpha_{i}, 1\right), i=1,2,3$ distribution. Let

$$
\begin{aligned}
Y_{1} & =\frac{X_{1}}{X_{1}+X_{2}+X_{3}} \\
Y_{2} & =\frac{X_{2}}{X_{1}+X_{2}+X_{3}} \\
Y_{3} & =X_{1}+X_{2}+X_{3}
\end{aligned}
$$

denote 3 new random variables. Show that the joint pdf of Y_{1}, Y_{2} is given by

$$
f\left(y_{1}, y_{2}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} y_{1}^{\alpha_{1}-1} y_{2}^{\alpha_{2}-1}\left(1-y_{1}-y_{2}\right)^{\alpha_{3}-1}
$$

(Random variables that have a joint pdf of this form follow the Dirichlet distribution.)

EXERCISE 4

Let X_{1}, \ldots, X_{n} i.i.d. $N(\mu, \sigma)$. Let $Q_{1}=\bar{X}$ and $Q_{2}=X_{1}-\bar{X}$. Show that $M_{Q_{1}, Q_{2}(t, s)}=M_{Q_{1}}(t) M_{Q_{2}}(s)$.

EXERCISE 5

Let $\mathbf{X} \sim N_{n}(\mu \mathbf{1}, \boldsymbol{\Sigma})$, where $\mathbf{1}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$, and $\boldsymbol{\Sigma}$ is the variance covariance matrix of \mathbf{X}. Let $\boldsymbol{\Sigma}=(1-\rho) \mathbf{I}+\rho \mathbf{J}$,
with $\rho>-\frac{1}{n-1}, \mathbf{I}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1\end{array}\right)$ and $\mathbf{J}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1\end{array}\right)$. Therefore, when $\rho=0$ we have
$\mathbf{X} \sim N_{n}(\mu \mathbf{1}, \mathbf{I})$, and in this case we showed in class that \bar{X} and $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent. Are they independent when $\rho \neq 0$?

