Statistics 100B

Instructor: Nicolas Christou

Homework 5

Answer the following questions:

- a. Let $X \sim F_{m,n}$. Show that $F_{\alpha;m,n} = \frac{1}{F_{1-\alpha;n,m}}$ and $t_{1-\frac{\alpha}{2};n}^2 = F_{1-\alpha;1,n}$ and draw the relevant graphs for both questions.
- b. Let X_1, X_2, \ldots, X_{13} and Y_1, Y_2, \ldots, Y_{16} represent two independent random samples from the respective normal distributions $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$. It is given that $\sigma_1^2 = \frac{1}{5}\sigma_2^2$, but σ_2^2 is unknown. Construct a ratio that follows the t distribution with 27 degrees of freedom.
- c. Derive the distribution of the sample mean \bar{X} of independent X_1, \ldots, X_n where, $X_i \sim \Gamma(\alpha, \beta)$. Find a transformation of \bar{X} that follows a χ^2 distribution. What are the degrees of freedom of this transformation?

d. If
$$\mathbf{Y} \sim N_2(\mathbf{0}, \mathbf{\Sigma})$$
 prove that $\left(\mathbf{Y}'\mathbf{\Sigma}^{-1}\mathbf{Y} - \frac{Y_1^2}{\sigma_1^2}\right) \sim \chi_1^2$.
Note: $\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}, \ \mathbf{\Sigma}^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \begin{pmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{21} & \sigma_1^2 \end{pmatrix}, \ \sigma_{12} = \sigma_{21}, \ \sigma_{12} = \rho\sigma_1\sigma_2.$

- e. Find the mean and variance of the $X \sim t_n$ distribution.
- f. Find the mean and variance of the $X \sim F_{n,m}$ distribution.
- g. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$, be a random sample from a bivariate normal distribution, with $E(X_i) = \mu_1, E(Y_i) = \mu_2, \operatorname{var}(X_i) = \sigma_1^2, \operatorname{var}(Y_i) = \sigma_2^2$, and $\operatorname{corr}(X_i, Y_i) = \rho$. Note: $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent.

What is the distribution of $n\left(\bar{X}-\mu_1,\bar{Y}-\mu_2\right)\Sigma^{-1}\left(\begin{array}{c}\bar{X}-\mu_1\\\bar{Y}-\mu_2\end{array}\right)$.

- h. Let $Z \sim N(0, 1)$ and $U\chi_n^2$. Assume that Z and U are independent. Let $x = \frac{z}{\sqrt{\frac{U}{n}}}$ and w = u. Find the joint pdf of X and W and then find the marginal pdf of X. Your answer should be the same as the pdf given on page 7 of handout #13.
- i. Find the mean and variance of the non-central t distribution with non-centrality parameter δ .
- j. Find the mean and variance of the non-central F distribution with non-centrality parameter θ and degrees of freedom n_1 for the numerator and n_2 for the denominator.