University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Homework 8

Answer the following questions:

- a. Consider the regression model through the origin $y_i = \beta_1 x_i + \epsilon_i$, where $\epsilon_i \sim N(0, \sigma)$. It is assumed that the regression line passes through the origin (0, 0). Find the MLE of σ^2 , its expectation, and finally adjust it to be unbiased.
- b. Refer to question (a). Show that $\frac{(n-1)s_e^2}{\sigma^2} \sim \chi_{n-1}^2$, where s_e^2 is the unbiased estimator of σ^2 from question (a).
- c. Refer to question (a). Find the distribution of s_e^2 .
- d. Let X_1, X_2, \dots, X_n denote an i.i.d. random sample from the following distribution $(\alpha > 0)$.

$$f(x) = \begin{cases} \frac{\alpha x^{\alpha-1}}{3^a}, & 0 \le x \le 3\\ 0, & \text{elsewhere} \end{cases}$$

Find the expected value of X.

Derive the method of moments estimator of α .

Derive the method of maximum likelihood estimate of α .

e. Consider the regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where $\epsilon_i \sim N(0, \sigma)$. Find the Fisher information matrix $I(\beta_0, \beta_1, \sigma^2)$. Are $\hat{\beta}_0$ and $\hat{\beta}_1$ efficient estimators of β_0 and β_1 ?